K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 2 2024

Lời giải:

a. Xét tam giác $ABC$ và $HBA$ có:

$\widehat{B}$ chung

$\widehat{BAC}=\widehat{BHA}=90^0$

$\Rightarrow \triangle ABC\sim \triangle HBA$ (g.g)

b.

$BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25$ (cm) - định lý Pitago

$AH=2S_{ABC}:BC=AB.AC:BC=15.20:25=12$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm) - định lý Pitago

c.

Theo tính chất đường phân giác:

$\frac{DA}{DC}=\frac{AB}{BC}=\frac{15}{25}=\frac{3}{5}$

$DA+DC=AC=20$

$\Rightarrow DA=20:(3+5).3=7,5$ (cm)

$DC=AC-DA=20-7,5=12,5$ (cm)

AH
Akai Haruma
Giáo viên
12 tháng 2 2024

Hình vẽ:

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)

hay AH=7,2(cm)

9 tháng 5 2019

Đáp án B

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

1 tháng 10 2017

Đáp án B

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

5 tháng 8 2018

HS tự làm

12 tháng 3 2022

Theo định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=12cm\)

Vì BD là pg \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)

Theo tc dãy tỉ số bằng nhau ta có 

\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{12}{24}=\dfrac{1}{2}\Rightarrow DC=\dfrac{15}{2}cm;DA=\dfrac{9}{2}cm\)

12 tháng 3 2022

Cảm mơn bạn nhiều nha

15 tháng 4 2020

điểm H,K,I ở chỗ nào vậy