K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHIK có IN là phân giác

nên HN/NK=HI/IK=HK/IK(1)

Xét ΔHIK có KM là phân giác

nên HM/MI=HK/KI(2)

Từ (1) và (2) suy ra HN/NK=HM/MI

=>MN//IK

=>ΔHMN\(\sim\)ΔHIK

b: Ta có: HN/HI=NK/IK

=>HN/10=NK/8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{HN}{5}=\dfrac{NK}{4}=\dfrac{HN+NK}{5+4}=\dfrac{10}{9}\)

Do đó: HN=50/9(cm)

Xét ΔHIK có MN//IK

nên MN/IK=HN/HK

\(\Leftrightarrow MN=\dfrac{50}{9}:10\cdot8=\dfrac{40}{9}\left(cm\right)\)

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng vơi ΔBHA

b: BH=15^2/25=9(cm)

c: EH/EB=AH/AB=AC/BC

=>EH*BC=EB*AC

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=100\)

hay BC=10cm

Xét ΔABC có BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: AD=3cm; CD=5cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

hay \(AB^2=BH\cdot BC\)

19 tháng 8 2021

c) Ta có: \(\widehat{ABD}=\widehat{DBC}\)( BD là phân giác )\(\Rightarrow90^0-\widehat{ABD}=90^0-\widehat{DBC}\Rightarrow\widehat{BIH}=\widehat{ADI}\Rightarrow\widehat{AID}=\widehat{ADI}\Rightarrow\Delta ADI\) cân tại A\(\Rightarrow AI=AD\Rightarrow\dfrac{AB}{AI}=\dfrac{AB}{AD}\)

Xét Δ ABI và Δ CBD có:

\(\widehat{BAI}=\widehat{BCD}\left(\Delta ABC\sim\Delta HBA\right)\)

\(\dfrac{AB}{AI}=\dfrac{BC}{CD}\left(=\dfrac{AB}{AD}\right)\)

\(\Rightarrow\Delta ABI\sim\Delta CBD\left(c.g.c\right)\)

d) Xét ΔABH có:

BI là tia phân giác của \(\widehat{ABH}\)

\(\Rightarrow\dfrac{IH}{IA}=\dfrac{BH}{AB}\left(1\right)\)( tính chất tia phân giác)

Xét ΔABC có:

BD là tia phân giác của \(\widehat{ABC}\)

\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(2\right)\)( tính chất tia phân giác)

Ta có: \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\left(\Delta ABC\sim\Delta HBA\right)\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(đpcm\right)\)

 

 

a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

b) Xét tứ giác AKHI có

\(\widehat{KAI}=90^0\)

\(\widehat{HIA}=90^0\)

\(\widehat{HKA}=90^0\)

Do đó: AKHI là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HI là đường cao ứng với cạnh huyền AB, ta được:

\(AI\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HK là đường cao ứng với cạnh huyền AC, ta được:

\(AK\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

29 tháng 8 2023

xàm vãi câu a) có 1 góc mà g-g