Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
• áp dụng định lí pytago trong tam giác ABC vuông tại A, ta có :
BC^2 = AC^2 + AB^2
BC^2 = 3^2 + 4^2
BC^2 = 9 + 16
BC^2 = 25
BC = căn bậc 2 của 25
BC = 5 ( cm )
vậy BC = 5 cm
• diện tích của tam giác ABC là :
3 . 4 : 2 = 6 ( cm^2 )
vậy diện tích của tam giác ABC là 6 cm^2
b. xét tam giác HBA và tam giác HAC, ta có :
góc HBA = góc HAC ( hai góc kề bù )
góc A là góc chung ( gt )
do đó: tam giác HBA và tam giác HAC là hai tam giác đồng dạng ( g - g )
c. HA/HB = HC/HA ( cmt )
=> HA^2 = HB . HC
d. vì BD = 1/2BC ( t/chất của đường phân giác trong tam giác vuông )
nên BD = 1/2 . 5 = 2,5 ( cm )
mà BD = DC = 1/2BC
=> DC = 2,5 ( cm )
vậy BC , DC = 2,5 cm
a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
BH=3^2/5=1.8cm
\(S_{BCA}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
b Xét ΔHBA vuông tại H và ΔHAC vuông tại H co
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
c: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
d: ΔABC có AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7
=>BD=15/7cm; CD=20/7cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
HB=15^2/25=9cm
HC=25-9=16cm
c:AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=25/7
=>DB=75/7cm; DC=100/7cm
a: BC=25cm
b: Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{20}{8}=2.5\)
Do đó: AD=7,5cm; CD=12,5(cm)
b: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(HB=\dfrac{15^2}{25}=9\left(cm\right)\)
c: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc ABD=góc DBC
nên góc ADI=góc AID
hay ΔAID cân tại A
a, Xét ΔABC và ΔHBA có:
∠BAC chung, ∠BHA=∠BAC (=90o)
=> ΔABC ∼ ΔHBA (g.g)
b, Áp dụng đ/l Pitago vào △ABC ta có:
BC2=AB2+AC2 => BC=√(62+82)=10 (cm)
Ta có: SABC=\(\dfrac{1}{2}\)AB.AC=\(\dfrac{1}{2}\)AH.BC
=> 6.8=AH.10 => AH=4,8 (cm)
c, Xét △HAB và △HCA có:
∠BHA=∠CHA (=90o), ∠ABC=∠HAC (cùng phụ ∠BCA)
=> △HAB ∼ △HCA (g.g)
=> \(\dfrac{AB}{AC}=\dfrac{\text{△HAB}}{\text{△HCA}}\)=\(\dfrac{6}{8}\)=\(\dfrac{3}{4}\)
d, AD là đường p/g của △ABC => \(\dfrac{AB}{BD}=\dfrac{AC}{DC}\)=\(\dfrac{AB+AC}{BD+DC}=\dfrac{14}{10}=\dfrac{7}{5}\)
=> \(\dfrac{AB}{BD}=\dfrac{7}{5}\) => \(\dfrac{6}{BD}=\dfrac{7}{5}\) => BD=\(\dfrac{30}{7}\) (cm)
=> \(\dfrac{AC}{DC}\)\(=\dfrac{7}{5}\) => \(\dfrac{8}{DC}=\dfrac{7}{5}\) => DC=\(\dfrac{40}{7}\) (cm)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC đồng dạng với ΔHBA
=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)
=>\(BA^2=BH\cdot BC\)
b:ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=12^2+16^2=400\)
=>\(BC=\sqrt{400}=20\left(cm\right)\)
\(BA^2=BH\cdot BC\)
=>\(BH=\dfrac{12^2}{20}=7,2\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2+7,2^2=12^2\)
=>\(HA^2=12^2-7,2^2=9,6^2\)
=>HA=9,6(cm)
c: Xét ΔABC có BD là phân giác
nên \(\dfrac{AD}{CD}=\dfrac{BA}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\)
=>\(S_{ABD}=\dfrac{3}{5}\cdot S_{BCD}\)
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
Lời giải:
a. Xét tam giác $ABC$ và $HBA$ có:
$\widehat{B}$ chung
$\widehat{BAC}=\widehat{BHA}=90^0$
$\Rightarrow \triangle ABC\sim \triangle HBA$ (g.g)
b.
$BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25$ (cm) - định lý Pitago
$AH=2S_{ABC}:BC=AB.AC:BC=15.20:25=12$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm) - định lý Pitago
c.
Theo tính chất đường phân giác:
$\frac{DA}{DC}=\frac{AB}{BC}=\frac{15}{25}=\frac{3}{5}$
$DA+DC=AC=20$
$\Rightarrow DA=20:(3+5).3=7,5$ (cm)
$DC=AC-DA=20-7,5=12,5$ (cm)
Hình vẽ: