Câu 6:
∆ABC có AB = 3cm; AC = 4cm; BC = 5cm. Lấy D thuộc tia đối của tia AB sao cho AD = 1,5 cm, lấy E thuộc tia đối của tia AC sao cho AE = 2 cm. Khi đó độ dài đoạn DE = cm.
(Nhập kết quả dưới dạng số thập phân gọn nhất)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Pytago: }AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx37^0\)
Áp dụng định lí Pytago:
`BC^2=AB^2+AC^2`
`<=>BC^2=3^2+4^2`
`<=>BC=5(cm)`
AM là đường trung tuyến của `\DeltaABC`
`=> AM = (BC)/2 = 5/2 (cm)`
5 sai vì 3^2 + 4^2 khác 7^2
6 sai => đúng phải là: ac^2 + bc^2 = ab^2
7 Đúng
8 đúng
a: BC=5cm
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó:ΔBAE=ΔBHE
Suy ra: BA=BH
c: Ta có: ΔBAE=ΔBHE
nên EA=EH
mà EH<EC
nên EA<EC
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=5cm\)
b, Xét tam giác ABE và tam giác HBE
BE _ chung
^ABE = ^HBE
Vậy tam giác ABE = tam giác HBE (ch-gn)
c, Xét tam giác EHC vuông tại H
có EC > HE ( cạnh huyền > cạnh góc vuông )
HE = AE ( 2 cạnh tương ứng tam giác ABE và HBE )
=> AE < EC
\(AB^2+AC^2=3^2+4^2=25\)
\(BC^2=5^2=25\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A với BC là cạnh huyền
\(\Rightarrow\) Bán kính đường tròn ngoại tiếp tam giác ABC bằng 1 nửa BC
\(R=\dfrac{5}{2}=2,5\left(cm\right)\)
\(\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=6\)
=>1/2*3*sin135*AB=6
=>\(AB=4\sqrt{2}\left(cm\right)\)
Hướng dẫn thôi:
vì∆ABC có AB = 3cm; AC = 4cm; BC = 5cm. áp dụng pytago tam giác ABC vuông tại A
Vì Lấy D thuộc tia đối của tia AB lấy E thuộc tia đối của tia AC
EAD=ABC=90 =>ED=căn(1.5^2+2^2)=2.5
Bài này bạn dùng tam giác đồng dạng nhé, tam giác ABC đồng dạng tam giác ADE có hai góc A đối bằng nhau \(\frac{AD}{AB}=\frac{AE}{AC}=2\)
\(\Rightarrow DE=\frac{BC}{2}=\frac{5}{2}=2,5\)