1.
a) Vẽ vào vở ΔABC, biết AB = 2,5 cm ; AC = 3,5 cm ; BC = 7 cm .
b) Vẽ vào vở ΔEFG , có EF = FG = GE = 3 cm . Sau đó đo ba góc của tam giác EFG rồi cho biết số đo của mỗi góc .
c) Sắp xếp lại trình tự các bước chứng minh bài toán sau
Bài toán : " ΔAMB và ΔANB có MA = MB , NA = NB ( h.69 ) . Chứng minh rằng ∠AMN = ∠ BMN " .
Các bước chứng minh :
i) Do đó ΔAMN = ΔBMN ( c.c.c )
ii) MN : cạnh chung ;
MA = MB ( giả thiết )
NA = NB ( giả thiết )
iii) Suy ra ∠AMN = ∠BMN (hai góc tương ứng )
iv) ΔAMN và ΔBMN có :
2 . a) Ví dụ
Cho hình 70 , chứng minh DE là tia phân giác của ∠ADB .
Xét ΔADE và ΔBDE , từ hình vẽ ta có :
AD = BD ; AE = BE ; DE là cạnh chung.
Do đó ΔADE = ΔBDE ( c.c.c ) , suy ra ∠ADE = ∠BDE ( hai góc tương ứng ) .
b) Em hãy giải bài toán sau và viết vào vở như ví dụ trên .
Bài toán : Cho đoạn thẳng AB = 5 cm . Vẽ đường tròn tâm A bán kính 3 cm và đường tròn tâm B bán kính 4,5 cm , chúng cắt nhau ở C và D . Chứng minh rằng AB là tia phân giác của góc CAD .
TẤT CẢ BÀI TRÊN ĐỀU LÀ CHƯƠNG TRÌNH VNEN CÁC BẠN LÀM ĐẦY ĐỦ VÀ CHÍNH XÁC NHÉ
MÌNH ĐANG CẦN GẤP , NGÀY MAI CÔ KIỂM TRA RÙI
1.
a)
b)
Thực hiện đo các góc của \(\Delta EFG\), ta có:
\(\widehat{E}=\widehat{F}=\widehat{G}=60^0.\)
c) Các bước chứng minh bài toán lần lượt là: iv → ii → I → iii.
2.
b)
Chúc bạn học tốt!