Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=20^2-12^2=256\)
hay AC=16(cm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AI là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BI\cdot BC\\AC^2=CI\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=\dfrac{12^2}{20}=\dfrac{144}{20}=7.2\left(cm\right)\\IC=\dfrac{16^2}{20}=\dfrac{256}{20}=12.8\left(cm\right)\end{matrix}\right.\)
Áp dụng Pitago:
\(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)
Áp dụng hệ thức lượng:
\(AB^2=IB.BC\Rightarrow IB=\dfrac{AB^2}{BC}=7,2\left(cm\right)\)
\(IC=BC-IB=12,8\left(cm\right)\)
bn tự kẻ hình nhé:
a) Xét tgiac IAB và tgiac ICA có:
góc I: chung
góc IAB = góc ICA (chắn cung AB)
suy ra: tgiac IAB = tgiac ICA (g.g)
=> IA/IC = IB/IA = AB/AC
=> IA/IC . IB/IA = AB/AC . AB/AC
=> IB/IC = AB^2/AC^2 (đpcm)
b) Theo câu a) ta có:
IA/IC = IB/IA = AB/AC = 5/7
Đặt: IA = 5k thì: IC = 7k; IB = 25/7 k
Ta có: IC - IB = BC
=> \(BC=7k-\frac{25}{7}k=\frac{24}{7}k\)
=> \(24=\frac{24}{7}k\)
=> \(k=7\)
Vậy IA = 5.7 = 35
IC = 7.7 = 49
A B C D H E I
a) Mình nghĩ đề đúng phải là: CMR: \(\frac{HB}{HC}=\frac{IB^2}{IA^2}\)
Xét \(\Delta\)BEC có: Đường trung tuyến BA; BA vuông góc CE (tại A) => \(\Delta\)BEC cân tại B
=> ^BEC = ^BCE hay ^IEA = ^ACB. Mà ^ACB = ^IAB (=^HAB) (Cùng phụ ^HAC) nên ^IEA = ^IAB
Xét \(\Delta\)BAI và \(\Delta\)AEI có: ^AIE chung; IAB = ^IEA => \(\Delta\)BAI ~ \(\Delta\)AEI (g.g)
=> \(\frac{IB}{IA}=\frac{AB}{EA}\)=> \(\frac{IB}{IA}=\frac{AB}{AC}\)(Do AE=AC) => \(\frac{IB^2}{IA^2}=\frac{AB^2}{AC^2}\)
Dễ thấy \(\Delta\)BAH ~ \(\Delta\)ACH (g.g) => \(\frac{S_{BAH}}{S_{ACH}}=\frac{AB^2}{AC^2}\)
Do đó: \(\frac{IB^2}{IA^2}=\frac{S_{BAH}}{S_{ACH}}\). Lại có: \(\frac{S_{BAH}}{S_{ACH}}=\frac{HB.AH}{HC.AH}=\frac{HB}{HC}\)=> \(\frac{IB^2}{IA^2}=\frac{HB}{HC}\)(đpcm).
b) Theo ĐL đường phân giác trong tam giác thì \(\frac{DB}{DC}=\frac{AB}{AC}\Rightarrow\frac{AB}{AC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AC=\frac{4}{3}AB\)
Áp dụng ĐL Pytago cho \(\Delta\)ABC vuông tại A: \(AB^2+AC^2=BC^2\). Thay AC=4/3.AB, ta có:
\(AB^2+\frac{16}{9}AB^2=BC^2=1225\)\(\Rightarrow AB^2=441\) (cm)
Theo hệ thức lượng: \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=12,6\)(cm)
Suy ra: \(HD=DB-BH=15-12,6=2,4\); \(CH=BC-BH=22,4\)
Mặt khác \(\Delta\)BAI ~ \(\Delta\)AEI (cmt) => \(IA^2=IB.IE\) (1)
\(\Rightarrow IA^2=IB^2+IB.BE=IB^2+IB.BC=IB^2+35.IB\)
Lại có: \(\frac{IB^2}{IA^2}=\frac{HB}{HC}\)(câu a) nên \(\frac{IB^2}{IB^2+35.IB}=\frac{HB}{HC}=\frac{12,6}{22,4}=\frac{9}{16}\)
Đặt IB=x (x>0) , ta có phương trình sau:
\(\frac{x^2}{x^2+35x}=\frac{9}{16}\Rightarrow9x^2+315x=16x^2\Leftrightarrow7x^2-315x=0\)
\(\Leftrightarrow7x\left(x-45\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=45\end{cases}}\)(loại TH x=0 vì x > 0)
=> \(IB=45\)(cm) => IE = IB + BE = IB + BC = 45 + 35 = 80 (cm). Thế vào (1), ta được:
\(IA^2=45.80\Rightarrow IA=60\)(cm)
Ta sẽ có: \(S_{BAE}=S_{ABC}=\frac{AB.AC}{2}=\frac{AB.\frac{4}{3}AB}{2}=294\)(cm2)
\(S_{ABI}=\frac{BH.AI}{2}=\frac{12,6.60}{2}=378\)(cm2); \(S_{AID}=\frac{HD.AI}{2}=\frac{2,4.60}{2}=72\)(cm2)
Theo t/c diện tích miền đa giác: \(S_{AEID}=S_{BAE}+S_{ABI}+S_{AID}=294+378+72=744\)(cm2)
Vậy \(S_{AEID}=744\)cm2.
a: \(AC=\sqrt{12^2+14^2}=2\sqrt{85}\left(cm\right)\)
\(BH=\dfrac{BA\cdot BC}{AC}=\dfrac{12\cdot14}{2\sqrt{85}}=\dfrac{84\sqrt{85}}{85}\left(cm\right)\)
b: Xét ΔABC có BD là đường phân giác
nên AD/AB=CD/BC
=>AD/12=CD/14
=>AD/6=CD/7
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{7}=\dfrac{AD+CD}{6+7}=\dfrac{2\sqrt{85}}{13}\)
Do đó: \(AD=\dfrac{12\sqrt{85}}{13}\left(cm\right);CD=\dfrac{14\sqrt{85}}{13}\left(cm\right)\)
Bài 1:
a: Xét ΔBAC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔBAC vuông tại A có
\(AB=BC\cdot\sin60^0\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
\(\left\{{}\begin{matrix}\widehat{DCA}=\widehat{HCA}\\\widehat{DCA}+\widehat{DAC}=90^0\\\widehat{HCA}+\widehat{HBA}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{HBA}=\widehat{DAC}\)
\(\left\{{}\begin{matrix}\widehat{DAC}+\widehat{BAE}=90^0\\\widehat{HBA}+\widehat{HAB}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{BAE}=\widehat{HAB}\)
Có \(\left\{{}\begin{matrix}AH=AE=R\\\widehat{BAE}=\widehat{HAB}\\\text{AB chung}\end{matrix}\right.\) \(\Rightarrow\Delta AHB=\Delta AEB\)
\(\Rightarrow\widehat{E}=\widehat{H}=90^0\Rightarrow BE\) là tiếp tuyến
Sử dụng hệ thức lượng trong tam giác vuông thôi:
AB*AC = AH*BC = 12*25 = 300
AB^2 + AC^2 = BC^2 = 25^2 = 625
giải hệ trên ta được : AB = 15, AC = 20
AB^2 = BH*BC=> BH = AB^2/BC = 9
AH^2 = BH*CH=> CH = AH^2/BH = 12^2/9 = 16
NGOÀI RA HỆ PT TRÊN CÒN 1 NGHIỆM NỮA LÀ AB=20,AC=15
a. Áp dụng định lý Pitago:
\(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)
b.
Áp dụng hệ thức lượng:
\(AB^2=IB.BC\Rightarrow IB=\dfrac{AB^2}{BC}=7,2\left(cm\right)\)
\(IC=BC-IB=12,8\left(cm\right)\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=20^2-12^2=256\)
hay AC=16(cm)
b)Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AI là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=IB\cdot BC\\AC^2=IC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=\dfrac{12^2}{20}=7.2\left(cm\right)\\IC=\dfrac{16^2}{20}=12.8\left(cm\right)\end{matrix}\right.\)