K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

 Gọi d là (2n+3,3n+5)

 Xét hiệu

 2 (3n+5)-3(2n+3) chia hết cho d

(6n+10)-(6n+9) chia hết cho d

 6n+10-6n-9 chia hết cho d

1 chia hết cho d

d=1

vậy (2n+3,3n+5)=1

k mk nha

27 tháng 11 2019

Gọi \(ƯCLN\left(2n+3;3n+5\right)=d\)

Ta có:

\(2n+3⋮d;3n+5⋮d\)

\(\Rightarrow6n+9⋮d;6n+10⋮d\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

=> ĐPCM

15 tháng 2 2016

2n + 5 chia 2n + 3 dư 2

2n + 3 chia 2n + 1 dư 2

Không chứng minh được !

15 tháng 2 2016

không được đâu vì các số này là số nguyên tố cùng nhau

21 tháng 10 2022

Bài 3: 

a: =>4n-2-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

b: =>-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

30 tháng 1 2022

2n, 2n + 1 và 2n + 2 là 3 số tự nhiên liên tiếp. Mà trong 3 số tự nhiên liên tiếp, luôn tồn tại 1 số chia hết cho 3

--> 2n(2n + 1)(2n + 2) chia hết cho 3 với mọi số tự nhiên n.

30 tháng 1 2022

- Khi \(2n\) chia cho 3 thì sẽ có số dư là 0,1,2:

- Xét \(2n=3k\) =>\(2n\left(2n+1\right)\left(2n+2\right)\) ⋮3 (1)

- Xét \(2n=3k+1\) =>\(2n+2=3k+3\) =>\(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 (2)

- Xét \(2n=3k+2\) =>\(2n+1=3k+3\) =>\(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 (3)

- Từ (1),(2),(3) suy ra \(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 với mọi số tự nhiên n.

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+2}.2+2^{n+2}$

$=3^{n+1}(9+1)+2^{n+2}(2+1)$

$=3^{n+1}.10+2^{n+2}.3$

$=6.3^n.5+6.2^{n+1}=6(3^n.5+2^{n+1})\vdots 6$ (đpcm)

4 tháng 1 2016

ta có n^4+2n^3+2n^2+2n+1=(n^2+n+1)^2-n^2=(n^2+1)(n+1)^2=t^2khi và chỉ khi n^2+1 là số chính phương

có n^2+1=a^2khi và chỉ khi n=0

Số số hạng là: 2n-1+1=2n(số)

Tổng là

\(\dfrac{2n\left(2n+1\right)}{2}=n\left(2n+1\right)⋮2n+1\)

18 tháng 6 2021

a) \(2+4+6+...+2n=n\left(n+1\right)\)       (1)

\(n=1\) ta có : \(2=1\cdot\left(1+1\right)\)  ( đúng)

Giả sử (1) đúng đến n, ta sẽ chứng minh (1) đúng với n+1

Có \(2+4+6+...+2n+2\left(n+1\right)\)

\(=n\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n+2\right)\)

=> (1) đúng với n+1

Theo nguyên lý quy nạp ta có đpcm

b) sai đề nha, mình search google thì được như này =))

 \(1^3+3^3+5^3+...+\left(2n-1\right)^2=n^2\left(2n^2-1\right)\)     (2)

\(n=1\) ta có : \(1^3=1^2\cdot\left(2-1\right)\)   (đúng) 

giả sử (2) đúng đến n, tức là \(1^3+3^3+...+\left(2n-1\right)^3=n^2\left(2n^2-1\right)\)

Ta c/m (2) đúng với n+1

Có \(1^3+3^3+...+\left(2n+1\right)^3=n^2\left(2n^2-1\right)+\left(2n+1\right)^3\)

\(=2n^4+8n^3+11n^2+6n+1\)

\(=\left(n^2+2n+1\right)\left(2n^2+4n+1\right)\)

\(=\left(n+1\right)^2\left[2\left(n+1\right)^2-1\right]\)   => (2) đúng với n+1

Theo nguyên lý quy nạp ta có đpcm

 

14 tháng 12 2022

    3n+4+3n+2 + 2n+3 + 2n+1

=  3n.( 34 + 32) + 2n.( 23+2)

= 3n.90 + 2n.10

= 10.( 3n.9+2n.5)

vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)