Khoảng cách từ điểm M( 2; 3) đến đường thẳng ∆: 3x- 4y+ 1= 0 là:
A. 1
B.2
C. 1/2
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi parabol có dạng y=ax2
Vì P đi qua A(-2;-2)\(\Rightarrow\)a=-\(\dfrac{1}{2}\)
\(\Rightarrow\)P có dạng y= -\(\dfrac{1}{2}\)x2 (1)
vì khoảng cách đến trục hoành gấp đôi khoảng cách đến trục tung\(\Rightarrow\)\(\left|y\right|\)=2\(\left|x\right|\)
Nếu x>0 thì y>0 (vô lí)
Nếu x<0 thì y<0\(\Rightarrow\)y=-2x (2)
Từ (1) và (2) có x=4 và y=-2
hoặc x=-4 và y= -2
vậy M(4;-2) hoặc(-4;-2)
Trả lời:
Từ điền số 1 đến điểm 101 sẽ có: 101-1=100 khoảng bằng nhau.=> mỗi một khoảng bằng nhau có độ dài= 1m/100= 100cm/100=1cm
Từ điểm 13 đến điểm 31 có (31-13)=18 khoảng bằng nhau
=> Khoảng cách từ điểm 13 đến điểm 31 là: 18x1 cm= 18cm
Theo bài ra ta có: quãng đường AB dài 540km => Nửa quãng đường AB dài 270km.
Gọi quãng đường ô tô và xe máy đã đi là S1 và S2.
Trong cùng một thời gian thì quãng đường tỉ lệ thuận với vận tốc.
\(\dfrac{S_1}{V_1}=\dfrac{S_2}{V_2}=t\)
Ta có phương trinh:
\(\dfrac{270-a}{65}=\dfrac{270-a}{40}\Rightarrow t=\dfrac{270}{90}=3h\)
Vậy sau 3 giờ thì ô tô cách M 1 khoảng bằng 1/2 khoảng cách xe máy đến M
Áp dụng công thức tính khoảng cách từ 1 điểm đến 1 đường thẳng ta có:
Chọn A.