K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2021

Gọi parabol có dạng y=ax2

Vì P đi qua A(-2;-2)\(\Rightarrow\)a=-\(\dfrac{1}{2}\)
\(\Rightarrow\)P có dạng y= -\(\dfrac{1}{2}\)x2 (1)

vì khoảng cách đến trục hoành gấp đôi khoảng cách đến trục tung\(\Rightarrow\)\(\left|y\right|\)=2\(\left|x\right|\)

Nếu x>0 thì y>0 (vô lí)

Nếu x<0 thì y<0\(\Rightarrow\)y=-2x    (2)

Từ (1) và (2) có x=4 và y=-2

hoặc x=-4 và y= -2
vậy M(4;-2) hoặc(-4;-2)

19 tháng 2 2021
7 tháng 11 2017

Bài 3 làm sao v ạ?

2 tháng 8 2015

\(a\text{) Gọi }M\left(m;m^2\right)\in P\)

\(d\left(M;Ox\right)=d\left(M;Oy\right)\Leftrightarrow\left|x_M\right|=\left|y_M\right|\)\(\Leftrightarrow\left|m\right|=\left|m^2\right|\Leftrightarrow m^2=m\text{ hoặc }m^2=-m\)

\(\Leftrightarrow m^2-m=0\text{ hoặc }m^2+m=0\)

\(\Leftrightarrow m=0\text{ hoặc }m=1\text{ hoặc }m=-1\)

\(\text{Kết luận: }M\left(0;0\right)\text{ hoặc }M\left(1;1\right)\text{ hoặc }M\left(-1;1\right)\)

\(b\text{) }A\in d\Rightarrow a+b=1\text{ (1)}\)

\(\text{Phương trình hoành độ giao điểm của }P\text{ và }d\text{ là: }x^2=ax+b\)

\(\Leftrightarrow x^2-ax-b=0\text{ (*)}\)

\(d\text{ là tiếp tuyến của }P\Leftrightarrow d\text{ giao }P\text{ tại 1 điểm duy nhất }\Leftrightarrow\left(\text{*}\right)\text{ có nghiệm kép }\)

\(\Leftrightarrow\Delta=a^2+4b=0\text{ (2)}\)

\(\left(1\right)\Leftrightarrow b=1-a;\text{ thay vào (2) ta được: }a^2+4\left(1-a\right)=0\)

\(\Leftrightarrow a^2-4a+4=0\Leftrightarrow\left(a-2\right)^2=0\Leftrightarrow a=2\)

\(\Rightarrow b=-1\)

\(\text{Vậy }a=2;\text{ }b=-1\)

 

15 tháng 11 2020

Phương trình hoành độ giao điểm của (P) và (d):

x2 + 2x -m2 + 1 = 0 

Để thỏa mãn yêu cầu bài toán thì pt này phải có hai nghiêm phân biệt xD và xE và xD + xE = 0

Áp dụng định lý Vi-et thì xD +xE = -2 \(\Rightarrow\)\(\in\varnothing\)

AH
Akai Haruma
Giáo viên
30 tháng 5 2023

Đề thiếu. Bạn xem lại đề.

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Lời giải:

PT hoành độ giao điểm:

$x^2-2mx+2m-1=0(*)$

Để $(p)$ và $(d)$ cắt nhau tại 2 điểm phân biệt thì pt $(*)$ có 2 nghiệm phân biệt 

$\Leftrightarrow \Delta'=m^2-(2m-1)>0\Leftrightarrow (m-1)^2>0\Leftrightarrow m\neq 1$

Áp dụng định lý Viet:

$x_1+x_2=2m$

$x_1x_2=2m-1$

$(P)$ và $(d)$ cắt nhau tại 2 điểm nằm khác phía trục tung

$\Leftrightarrow x_1x_2<0$

$\Leftrightarrow 2m-1<0\Leftrightarrow m< \frac{1}{2}$

Khoảng cách từ 2 giao điểm đến trục hoành là:

$|y_1|+|y_2|=|x_1^2|+|x_2^2|=5$

$\Leftrightarrow x_1^2+x_2^2=5$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=5$

$\Leftrightarrow (2m)^2-2(2m-1)=5$
$\Leftrightarrow 4m^2-4m-3=0$

$m=\frac{-1}{2}$ hoặc $m=\frac{3}{2}$

Vì $m\neq 1$ và $m< \frac{1}{2}$ nên $m=\frac{-1}{2}$

 

 

24 tháng 5 2022

Phương trình hoành độ của (d) và (P) : 

\(x^2=\left(2m-1\right)x+4\left(1\right)\)

\(\Leftrightarrow x^2-\left(2m-1\right)x-4=0\)

\(\Delta=\left(2m-1\right)^2+16>0\) ⇒ Phương trình có hai nghiệm phân biệt với mọi m.

- A và B cách Oy nên \(x_A,x_B\) trái dấu ⇒ \(x_Ax_B< 0\Leftrightarrow P=\dfrac{c}{a}=-4< 0\)

⇒ Để thỏa đề bài, \(x_A+x_B=0\).

Theo định lí Vi-ét

 \(x_A+x_B=-\dfrac{b}{a}=2m-1=0\)

\(\Leftrightarrow m=\dfrac{1}{2}\)

Vậy : (d) cắt (P) tại 2 điểm phân biệt với khoảng cách từ A và B đến trục Oy bằng nhau khi \(m=\dfrac{1}{2}\)