K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

 

Gọi d la ƯCLN(2n+1,2n^2-1)ta có

2n+1 và 2n^2-1chia het cho d

2n^2+n-2n^2+1chia het cho d

n+1chia hết cho d

2(n+1)-2n+1chia het cho d

1chia hết cho d=>d€Ư(1)=1

Vậy ƯCLN(2n+1,2n^2-1)=1

Thêm dấu suy ra bạn nhé!

27 tháng 1 2016

ban nhan dung se ra dap an

5 tháng 1

Đặt \(\left(2n+1;2n+3\right)=d\) (d lẻ)

Khi đó \(\left\{{}\begin{matrix}2n+1⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Do d lẻ \(\Rightarrow d=1\)

\(\Rightarrow\) đpcm

goij ucln (2n+1;2n+3)=d
=> 2n+1: hết d 
     2n+3: hết d
=> 2n+3-2n+1: hết d
      2: hết d => de{1;2}
lập luận d là số lẻ
=> d=1
VẬY...

30 tháng 12 2016

Bài 1 

Tách n thành 2 dạng 2k +1 (lẻ) và 2k (chẵn)

Với trường hợp 2k + 1 (lẻ) ,ta có :

(n + 4)(n + 5) 

= (2k + 1 + 4)(2k + 1 + 5)

= (2k + 5)(2k + 6)

= (2k + 5).2.(k + 3)    chia hết cho 2    (1)

Với trường hợp 2k (chẵn) ,ta có :

(n + 4)(n + 5) 

= (2k + 4)(2k + 5) 

= 2.(k + 2)(2k + 5) chia hết cho 2    (2)

Từ 1 và 2 

=> Với mọi x , thì (n + 4)(n + 5) chia hết cho 2 

30 tháng 12 2016

BẠN TỐT ĐẤY THẾ CÒN BÀI HAI THÌ SAO

21 tháng 7 2017

Gọi: d = ƯCLN ( 2n + 5; 2n + 4 ) ; \(d\in N\)*

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\2n+4⋮d\end{cases}\Rightarrow}\left(2n+5\right)-\left(2n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy:  ƯCLN ( 2n + 5; 2n + 4 ) = 1 ( đpcm )

21 tháng 7 2017

Có 2n+5 luôn luôn lẻ

     2n+4 luôn luôn chẵn

Suy ra 2n+5,2n+4 nguyên tố cùng nhau

hay UCLN ( 2n+5,2n+4 )=1(đpcm)

14 tháng 11 2015

Bạn ơi mình giải nhé:

(2n;2n+2)

2n là số chẵn =>2n chia hết cho 2

2n+2 là số chẵn =>2n+2 chia hết cho 2

Vậy ƯCLN(2n;2n+2)=2

 

 

(2n+1;2n+3)

2n+1 là số lẻ.=>2n+1 chia hết cho 1

2n+3 là số lẻ=>2n+3 chia hết cho 1

[Vì 2n+1 và 2n+3 không thể chia hết cho cùng 1 số ngoại trừ 1 nên là ƯCLN(2n+1;2n+3)=1]

Vậy ƯCLN(2n+1;2n+3)=1

30 tháng 10 2021

\(1,\\ a,Gọi.ƯCLN\left(n,n+1\right)=d\\ \Rightarrow n⋮d;n+1⋮d\\ \Rightarrow n+1-n⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(n,n+1\right)=1\)

30 tháng 10 2021

còn nx honggggg

10 tháng 2 2017

a, Gọi d là ƯCLN(2n+2;2n)

=> 2 n + 2 ⋮ d 2 n ⋮ d ⇒ 2 n + 2 - 2 n = 2 ⋮ d

Mà d là ƯCLN nên d là số lớn nhất và cũng là ước của 2.

Vậy d = 2

b, Gọi ƯCLN(3n+2 ;2n+1) = d

Ta có:  3 n + 2 ⋮ d 2 n + 1 ⋮ d ⇒ 2 3 n + 2 ⋮ d 3 2 n + 1 ⋮ d

=>[2(3n+2) – 3(2n+1)] = 1 ⋮ d

Vậy d = 1

17 tháng 8 2016

1) Tìm ưcln(2n + 1  ,  2n + 3)

Ta có: gọi ƯCLN(2n+1  ,  2n+3) là d

=> 2n+1chia hết d ;  2n+3 chia hết d

=>(2n+3-2n+1) chia hết  d

=> 2n+3 - 2n -1  chia hết d

=>2 chia hết cho d

=>ƯC(2n+1 ; 2n+3 ) = Ư(2)= {1;2}

vì 2n+3 và 2n+1 không chia hết cho d nên d=1

vậy ƯCLN(2n+1;2n+3)=1

2)Tìm ưcln(2n + 5,3n + 7)

gọi ƯCLN(2n+5 ; 3n+7) là d

=> 2n+5 chia hết cho d ; 3n+ 7 chia hết cho d

=>6n+15 chia hết cho d ; 6n+14 chia hết cho d

=>(6n+15-6n-14) chia hết cho d

=> 6n+15-6n-14 chia hết cho d

=> 1 chia hết cho d => d=1

vậy ƯCLN(2n+5;3n+7)= 1

18 tháng 8 2016

Thanks bn nhiều.