K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2015

đây là câu tl của tớ:

\(2^x=4^{y-1}<=>2^x=\left(2^2\right)^{y-1}=2^{2y-2}=>x=2y-2=>2y=x+2\)
 

\(27^y=3^{x+8}<=>\left(3^3\right)^y=3^{x+8}<=>3^{3y}=3^{x+8}<=>3y=x+8=>3y=x+2+6\)

từ 2y=x+2

3y=x+2+6

=>3y=2y+6

=>3y-2y=6

=>y(3-2)=6

=>y=6

còn lại tớ lm giống với Tú Linh!

Ói , hoa mắt chóng mặt nhức đầu ,

9 tháng 8 2017

sao giống có chữa quá z

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Đây không phải là dạng của phương trình đường tròn (hệ số \({y^2}\) bằng -1).

b) Vì \({a^2} + {b^2} - c = {1^2} + {\left( { - 2} \right)^2} - 6 < 0\) nên phương trình đã cho không là phương trình tròn.

c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {2^2} - 1 = 11 > 0\) nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;2} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c}  = \sqrt {11} \).

23 tháng 9 2021

Bài 1:

\(N=2x^2+4y^2-2x-4y+15=2\left(x^2-x+\dfrac{1}{4}\right)+\left(4y^2-4y+1\right)+\dfrac{27}{2}=2\left(x-\dfrac{1}{2}\right)^2+\left(2y-1\right)^2+\dfrac{27}{2}\ge\dfrac{27}{2}\)

\(minN=\dfrac{27}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)

Bài 2:

\(\Leftrightarrow4x^2+12x+9-25x^2+50x-25=0\)

\(\Leftrightarrow21x^2-62x+16=0\)

\(\Leftrightarrow\left(3x-8\right)\left(7x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=\dfrac{2}{7}\end{matrix}\right.\)

23 tháng 9 2021

Bạn vào giúp mk thêm câu nữa nhé.

31 tháng 3 2019

Bạn xét tích thì nó ra dương thì tất nhiên có 1 biểu thức lớn hơn 0 rồi

1 tháng 4 2019

Nói rõ hơn đi

18 tháng 9 2017

Hình như 2y + x = 5 chứ ? ' '

18 tháng 9 2017

thế thì tớ biết làm rùi thanks

13 tháng 7 2019

\(1.\)

\(a;A=-2x^2+4x-18\)

\(A=-2\left(x^2-4x+18\right)\)

\(A=-2\left(x^2-2.x.2+4+14\right)\)

\(A=-2\left(x-2\right)^2-14\le-14\)

Dấu = xảy ra khi : \(x-2=0\)

                              \(\Rightarrow x=2\)

Vậy Amax =-14 tại x = 2

Các câu còn lại lm tương tự........