Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng ( -10; 10) sao cho đồ thị hám số y = \(^{x^3-2mx^2+\left(2m+6\right)x}\) có 2 điểm cực trị nằm về 2 phía khác nhau của trục hoành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vậy có 8 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Đáp án D
Chọn B
Phương pháp:
Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.
Ta sử dụng phương trình có hai nghiệm dương phân biệt
Cách giải:
Ta có
Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.
Khi đó
Mà nên có 2018 – 3 + 1 = 2016 giá trị m thỏa mãn.
Ta có:
⇒ * luôn có hai nghiệm phân biệt x 1 ; x 2 x 1 < x 2 với mọi m.
Áp dụng hệ thức Vi-ét ta có:
Vậy có tất cả 1001 giá trị m thỏa mãn bài toán.
Chọn B.
Bài toán trở thành tìm m để hàm số y = t 3 + 3 t 2 - m t - 4 đồng biến trên 0 ; 1 .
TXĐ: D = R .
Ta có y ' = 3 t 2 + 6 t - m
Để hàm số đồng biến trên 0 ; 1
ta có TXĐ:
Có 2019 giá trị của m thỏa mãn.
Chọn B.
Chọn B
Phương pháp: Sử dụng đạo hàm của hàm hợp để tính đạo hàm.