Cho tam giác ABC có \(\widehat{A}=90^0\) ; đường cao AH cắt phân giác BD tại I
a, Cm : IA.BH=IH.AB
b, Cm:\(AB^2=BH.BC\)
c, Kẻ HK // BD \(\left(K\in AC\right)\). Cm :\(AD^2=DK.DC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Trong tam giác vuông A’B’C’ có \(\widehat{A'}=90^0\)
Áp dụng định lí Pi-ta-go, ta có:
A′B′2+A′C′2 =B′C′2
=> A′C′2=B′C′2−A′B′2=152−92=144
=> A’C’ =12 (cm)
Trong tam giác vuông ABC có \(\widehat{A}=90^0\)
Áp dụng định lí Pi-ta-go, ta có:
BC2=AB2+AC2= 62+82=100
Suy ra: BC = 10 (cm)
Ta có: \(\dfrac{A'B'}{AB}=\dfrac{9}{6}=\dfrac{3}{2}\)
\(\dfrac{A'C'}{AC}=\dfrac{12}{8}=\dfrac{3}{2}\)
\(\dfrac{B'C'}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)
Suy ra: \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=\dfrac{3}{2}\)
Vậy ∆ A’B’C’ đồng dạng với ∆ ABC
\(\widehat{B}+\widehat{C}=140^0\)
\(\Leftrightarrow4\cdot\widehat{C}=140^0\)
\(\Leftrightarrow\widehat{C}=35^0\)
hay \(\widehat{B}=105^0\)
Vậy: ΔABC tù
Lời giải:
a) Tam giác $BAH$ có đường phân giác $BI$, áp dụng tính chất đường phân giác ta có: \(\frac{IA}{IH}=\frac{BA}{BH}\Rightarrow IA.BH=IH.AB\) (đpcm)
b)
Xét tam giác $BAH$ và $BCA$ có:
\(\widehat{BHA}=\widehat{BAC}=90^0\)
\(\widehat{B}\) chung
\(\Rightarrow \triangle BAH\sim \triangle BCA(g.g)\)
\(\Rightarrow \frac{BA}{BH}=\frac{BC}{BA}\Rightarrow BA^2=BH.BC\) (đpcm)
c)
Xét tam giác $AHK$ có \(ID\parallel HK\), áp dụng đl Ta-let:
\(\frac{AD}{DK}=\frac{AI}{IH}(1)\)
Theo kết quả phần a,b \(\frac{AI}{IH}=\frac{AB}{BH}=\frac{BC}{BA}(2)\)
Xét tam giác $BAC$ có phân giác $BD$, áp dụng tính chất đường phân giác: \(\frac{BC}{BA}=\frac{DC}{DA}(3)\)
Từ \((1);(2);(3)\Rightarrow \frac{AD}{DK}=\frac{DC}{DA}\Rightarrow DA^2=DK.DC\)
Ta có đpcm.
Hình vẽ: