Cho phân thức B = \(\frac{x^2-10x+25}{x^2-5x}\)
a ) tìm điều kiện xác định
b ) tìm x để B =0 ; B = \(\frac{5}{2}\)
c) tìm x thuộc Z để b có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(x^2-5x\ne0\)
=> ĐKXĐ: \(x\left(x-5\right)\ne0\) => \(\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)
b. \(\dfrac{x^2-10x+25}{x^2-5x}\)
= \(\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}\)
= \(\dfrac{x-5}{x}\)
a: ĐKXĐ: x<>0; x<>-1
b: E=5(x+1)/2x(x+1)=5/2x
b: Để E=1 thì 5/2x=1
=>2x=5
=>x=5/2
A. x^2-5x=x(x-5)
óx≠0 óx≠0
óx-5 óx≠5
Khi x≠0,x≠5 thì phân thức đã cho có giá trị xác định
B. (x^2-10*x+25)/(x^2-5*x)
=[(x-5)^2]/x(x-5)
=(x-5)/x
Với x=1007 thì phân thúc y có giá trị là (1007-5)/1007=1002/1007 tương đương 0.995034756703079
a) ĐKXĐ:
x2-10x khác 0 và x2+10x khác 0
=>x.(x-10) khác 0 và x.(x+1) khác 0
=>x khác 0 và x khác 10 ;-10
b)\(A=\left(\frac{5x+2}{x^2-10x}+\frac{5x-2}{x^2+10x}\right).\frac{x^2-100}{x^2+4}\)
\(=\frac{5x+2}{x^2-10x}.\frac{x^2-100}{x^2+4}+\frac{5x-2}{x^2+10x}.\frac{x^2-100}{x^2+4}\)
\(=\frac{5x+2}{x.\left(x-10\right)}.\frac{\left(x-10\right)\left(x+10\right)}{x^2+4}+\frac{5x-2}{x.\left(x+10\right)}.\frac{\left(x-10\right)\left(x+10\right)}{x^2+4}\)
\(=\frac{\left(5x+2\right).\left(x+10\right)}{x.\left(x^2+4\right)}+\frac{\left(5x-2\right).\left(x-10\right)}{x.\left(x^2+4\right)}\)
\(=\frac{5x^2+52x+20+5x^2-52x+20}{x.\left(x^2+4\right)}=\frac{10x^2+40}{x.\left(x^2+4\right)}=\frac{10.\left(x^2+4\right)}{x.\left(x^2+4\right)}=\frac{10}{x}\)
Để A=20040 thì:
10/x=20040
=>x=1/2004
\(a,dkxd:x\ge0,x\ne4\)
\(b,B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\dfrac{1}{\sqrt{x}-2}\\ =\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\sqrt{x^2}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(c,x=16\left(tm\right)\Rightarrow B=\dfrac{\sqrt{16}+2}{\sqrt{16}\left(\sqrt{16}-2\right)}=\dfrac{4+2}{4\left(4-2\right)}=\dfrac{6}{8}=\dfrac{3}{4}\)
\(d,B>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Leftrightarrow\sqrt{x}+2>0\Leftrightarrow\sqrt{x}>-2\left(ktm\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Kết hợp với \(dk:x\ge0\) ta kết luận \(0\le x< 4\) thì \(B>0\).
a) Điều kiện xác định:
\(\left\{{}\begin{matrix}x-2\sqrt{x}\ne0\\x\ge0\end{matrix}\right.\)\(\Leftrightarrow x>0,x\ne4\)
Vậy...
b) \(B=\dfrac{\sqrt{x}.\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)^2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
Vậy \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
c) Tại x=16 ( thỏa mãn đk) thay vào B đã rút gọn ta được:
\(B=\dfrac{\sqrt{16}+2}{\sqrt{16}\left(\sqrt{16}-2\right)}=\dfrac{3}{4}\)
d) \(B>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\)
\(\Leftrightarrow\sqrt{x}-2>0\)\(\Leftrightarrow\sqrt{x}>2\Leftrightarrow x>4\)
Vậy x>4 thì B>0
a) Phân thức A được xác định khi: \(x^2-1\ne0\Rightarrow\left(x-1\right)\left(x+1\right)\ne0\Rightarrow\left\{{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
Vây ĐKXĐ của A là \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b)Ta có: \(A=\dfrac{x^2+2x+1}{x^2-1}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)}{\left(x-1\right)}\)
Vậy \(A=\dfrac{x+1}{x-1}\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
c) Ta có A=2 <-> \(\dfrac{x+1}{x-1}=2\Leftrightarrow x+1=2\left(x-1\right)\Leftrightarrow x+1=2x-2\)
\(\Leftrightarrow x+1-2x+2=0\Leftrightarrow3-x=0\Rightarrow x=3\)
Vậy khi x=3 thì A=2
ĐKXĐ: \(x^2-5x\ne0\)
\(\Leftrightarrow x\left(x-5\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)
Ta có: \(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x\left(x-5\right)}=\frac{x-5}{x}\)
Để \(\frac{x-5}{x}=0\Leftrightarrow x=5\)( Điều kiện không thỏa mãn )
Vậy không có giá trị nào của x để \(\frac{x^2-10x+25}{x^2-5x}=0\)
b) Để giá trị của phân thức trên bằng \(\frac{5}{2}\Leftrightarrow\frac{x-5}{x}=\frac{5}{2}\)
\(\Leftrightarrow\left(x-5\right).2=5x\)
\(\Leftrightarrow2x-10=5x\)
\(\Leftrightarrow3x=-10\)
\(\Leftrightarrow x=-\frac{10}{3}\)
\(a,\frac{x^2-10x+25}{x^2-5x}=\frac{x^2-10x+25}{x\left(x-5\right)}\)xác định
\(\Rightarrow x-5\ne0\Rightarrow x\ne5\)