Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) x≠2x≠2
Bài 2:
a) x≠0;x≠5x≠0;x≠5
b) x2−10x+25x2−5x=(x−5)2x(x−5)=x−5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x
c) Để phân thức có giá trị nguyên thì x−5xx−5x phải có giá trị nguyên.
=> x=−5x=−5
Bài 3:
a) (x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)
=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5
=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5
=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5
=[(x+1)2+6−(x2+2x−3)]⋅25=[(x+1)2+6−(x2+2x−3)]⋅25
=[(x+1)2+6−x2−2x+3]⋅25=[(x+1)2+6−x2−2x+3]⋅25
=[(x+1)2+9−x2−2x]⋅25=[(x+1)2+9−x2−2x]⋅25
=2(x+1)25+185−25x2−45x=2(x+1)25+185−25x2−45x
=2(x2+2x+1)5+185−25x2−45x=2(x2+2x+1)5+185−25x2−45x
=2x2+4x+25+185−25x2−45x=2x2+4x+25+185−25x2−45x
=2x2+4x+2+185−25x2−45x=2x2+4x+2+185−25x2−45x
=2x2+4x+205−25x2−45x=2x2+4x+205−25x2−45x
c) tự làm, đkxđ: x≠1;x≠−1
a) ĐKXĐ:
x2-10x khác 0 và x2+10x khác 0
=>x.(x-10) khác 0 và x.(x+1) khác 0
=>x khác 0 và x khác 10 ;-10
b)\(A=\left(\frac{5x+2}{x^2-10x}+\frac{5x-2}{x^2+10x}\right).\frac{x^2-100}{x^2+4}\)
\(=\frac{5x+2}{x^2-10x}.\frac{x^2-100}{x^2+4}+\frac{5x-2}{x^2+10x}.\frac{x^2-100}{x^2+4}\)
\(=\frac{5x+2}{x.\left(x-10\right)}.\frac{\left(x-10\right)\left(x+10\right)}{x^2+4}+\frac{5x-2}{x.\left(x+10\right)}.\frac{\left(x-10\right)\left(x+10\right)}{x^2+4}\)
\(=\frac{\left(5x+2\right).\left(x+10\right)}{x.\left(x^2+4\right)}+\frac{\left(5x-2\right).\left(x-10\right)}{x.\left(x^2+4\right)}\)
\(=\frac{5x^2+52x+20+5x^2-52x+20}{x.\left(x^2+4\right)}=\frac{10x^2+40}{x.\left(x^2+4\right)}=\frac{10.\left(x^2+4\right)}{x.\left(x^2+4\right)}=\frac{10}{x}\)
Để A=20040 thì:
10/x=20040
=>x=1/2004
x2−10x=x(x−10)≠0x2−10x=x(x−10)≠0 khi x≠0;x−10≠0x≠0;x−10≠0
Hay x≠0;x≠10x≠0;x≠10
x2+10x=x(x+10)≠0x2+10x=x(x+10)≠0 khi x≠0;x+10≠0x≠0;x+10≠0
Hay x≠0;x≠−10x≠0;x≠−10
x2+4≥4x2+4≥4
Vậy điều kiện của biến x để biểu thức đã cho được xác định là
x≠−10,x≠0,x≠10x≠−10,x≠0,x≠10
Để việc tính giá trị của biểu thức được đơn giản hơn ta rút gọn biểu thức trước :
(5x+2x2−10x+5x−2x2+10x).x2−100x2+4(5x+2x2−10x+5x−2x2+10x).x2−100x2+4
= [
ĐKXĐ: x2 - 10x khác 0, x2 + 10x khác 0
<=> x khác 0 và x khác +-10.
\((\dfrac{5x + 2}{x^2-10x}+\dfrac{5x-2}{x^2+10x}).\dfrac{x^2-100}{x^2+4}\)
= \(\dfrac{(5x+2)(x+10)+(5x-2)(x-10)}{x(x-10)(x+10)} .\dfrac{(x-10)(x+10)}{x^2+4}\)
= \(\dfrac{5x^2+12x+20+5x^2-12x+20}{x(x^2+4)}\)
= \(\dfrac{10x^2+40}{x(x^2+4)}\)
= \(\dfrac{10(x^2-4)}{x(x^2-4)}\)
= \(\dfrac{10}{x}\)
Thay x = 20040 vào biểu thức, ta có:
\(\dfrac{10}{20040}\) = \(\dfrac{1}{2004}\)
a) ĐKXĐ: x2-5x khác 0
<=>x.(x-5) khác 0
<=>x khác 0 và x khác 5
Vậy x khác 0 và x khác -5
b)ĐKXĐ: x2+4 khác 0 (luôn đúng)
Vậy với mọi x biểu thức đều xác định
\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\)
\(=\frac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\)
\(=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2-1+4\left(x-1\right)\right)}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)
a/ Để biểu thức xác đinh => 2x(x+5) khác 0 => x khác 0 và x khác -5
b/ Gọi biểu thức là A. Rút gọn A ta được:
\(A=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\left(x\ne0;x\ne-5\right)\)
A=1 => x-1=2 => x=3
c/ A=-1/2 <=> x-1=-1 => x=0
d/ A=-3 <=> x-1=-6 => x=-5
Đặt \(\frac{5x+5}{2x^2+2x}=A\)
a/ Để A xác định\(\Leftrightarrow2x^2+2x\ne0\Leftrightarrow2x\left(x+1\right)\ne0\Rightarrow x\ne0;x\ne-1\)
TXĐ:\(x\ne0;x\ne-1\)
b/ Với \(x\ne0;x\ne-1\)ta có \(A=\frac{5x+5}{2x^2+2x}\)
Để A=1\(\Leftrightarrow5x+5=2x^2+2x\)
\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow5=2x\)
\(\Rightarrow x=\frac{2}{5}\)( TM )
A. x^2-5x=x(x-5)
óx≠0 óx≠0
óx-5 óx≠5
Khi x≠0,x≠5 thì phân thức đã cho có giá trị xác định
B. (x^2-10*x+25)/(x^2-5*x)
=[(x-5)^2]/x(x-5)
=(x-5)/x
Với x=1007 thì phân thúc y có giá trị là (1007-5)/1007=1002/1007 tương đương 0.995034756703079