Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ:
x2-10x khác 0 và x2+10x khác 0
=>x.(x-10) khác 0 và x.(x+1) khác 0
=>x khác 0 và x khác 10 ;-10
b)\(A=\left(\frac{5x+2}{x^2-10x}+\frac{5x-2}{x^2+10x}\right).\frac{x^2-100}{x^2+4}\)
\(=\frac{5x+2}{x^2-10x}.\frac{x^2-100}{x^2+4}+\frac{5x-2}{x^2+10x}.\frac{x^2-100}{x^2+4}\)
\(=\frac{5x+2}{x.\left(x-10\right)}.\frac{\left(x-10\right)\left(x+10\right)}{x^2+4}+\frac{5x-2}{x.\left(x+10\right)}.\frac{\left(x-10\right)\left(x+10\right)}{x^2+4}\)
\(=\frac{\left(5x+2\right).\left(x+10\right)}{x.\left(x^2+4\right)}+\frac{\left(5x-2\right).\left(x-10\right)}{x.\left(x^2+4\right)}\)
\(=\frac{5x^2+52x+20+5x^2-52x+20}{x.\left(x^2+4\right)}=\frac{10x^2+40}{x.\left(x^2+4\right)}=\frac{10.\left(x^2+4\right)}{x.\left(x^2+4\right)}=\frac{10}{x}\)
Để A=20040 thì:
10/x=20040
=>x=1/2004
Bài 1:
a, Ta có:
\(\dfrac{x.\dfrac{xy}{x-y}}{x+\dfrac{xy}{x-y}}-\dfrac{y.\dfrac{xy}{x-y}}{y-\dfrac{xy}{x-y}}\)
\(=\dfrac{\dfrac{x^2y}{x-y}}{x+\dfrac{xy}{x-y}}-\dfrac{\dfrac{xy^2}{x-y}}{y-\dfrac{xy}{x-y}}\)
\(=\dfrac{\left(\dfrac{x^2y}{x-y}\right)\left(y-\dfrac{xy}{x-y}\right)-\left(\dfrac{xy^2}{x-y}\right)\left(x+\dfrac{xy}{x-y}\right)}{\left(x+\dfrac{xy}{x-y}\right)\left(y-\dfrac{xy}{x-y}\right)}\)
\(=\dfrac{\dfrac{x^2y^2}{x-y}-\dfrac{x^3y^2}{\left(x-y\right)^2}-\dfrac{x^2y^2}{x-y}-\dfrac{x^2y^3}{\left(x-y\right)^2}}{xy-\dfrac{x^2y}{x-y}+\dfrac{xy^2}{x-y}-\dfrac{x^2y^2}{\left(x-y\right)^2}}\)
\(=\dfrac{-\left(\dfrac{x^3y^2+x^2y^3}{\left(x-y\right)^2}\right)}{xy-\left(\dfrac{x^2y-xy^2}{x-y}\right)-\dfrac{x^2y^2}{\left(x-y\right)^2}}\)
\(=-\dfrac{\dfrac{x^2y^2\left(x+y\right)}{\left(x-y\right)^2}}{xy-\left(\dfrac{xy\left(x-y\right)}{\left(x-y\right)}\right)-\dfrac{x^2y^2}{\left(x-y\right)^2}}\)
\(=\dfrac{\dfrac{x^2y^2\left(x+y\right)}{\left(x-y\right)^2}}{\dfrac{x^2y^2}{\left(x-y\right)^2}}=x+y\)
Chúc bạn học tốt!! Làm một câu mà toát cả mồ hôi!
điều kiện của x để gtrị của biểu thức đc xác định
=>\(2x+10\ne0;x\ne0:2x\left(x+5\right)\ne0\)
\(2x+5\ne0;x\ne0\)
=>\(x\ne-5;x\ne0\)
vậy đkxđ là \(x\ne-5;x\ne0\)
rút gon giống với bạn nguyen thuy hoa đến \(\dfrac{x-1}{2}\)
b,để bt =1=>\(\dfrac{x-1}{2}=1\)
=>x-1=2
=>x=3 thỏa mãn đkxđ
c,d giống như trên
a)
\(\left\{{}\begin{matrix}x-1\ne0\\x+2\ne0\end{matrix}\right.\)
b)
x khác 1
c)
x khác 0; x khác 5
d) x khác 5 ; x khác -5
x2−10x=x(x−10)≠0x2−10x=x(x−10)≠0 khi x≠0;x−10≠0x≠0;x−10≠0
Hay x≠0;x≠10x≠0;x≠10
x2+10x=x(x+10)≠0x2+10x=x(x+10)≠0 khi x≠0;x+10≠0x≠0;x+10≠0
Hay x≠0;x≠−10x≠0;x≠−10
x2+4≥4x2+4≥4
Vậy điều kiện của biến x để biểu thức đã cho được xác định là
x≠−10,x≠0,x≠10x≠−10,x≠0,x≠10
Để việc tính giá trị của biểu thức được đơn giản hơn ta rút gọn biểu thức trước :
(5x+2x2−10x+5x−2x2+10x).x2−100x2+4(5x+2x2−10x+5x−2x2+10x).x2−100x2+4
= [
ĐKXĐ: x2 - 10x khác 0, x2 + 10x khác 0
<=> x khác 0 và x khác +-10.
\((\dfrac{5x + 2}{x^2-10x}+\dfrac{5x-2}{x^2+10x}).\dfrac{x^2-100}{x^2+4}\)
= \(\dfrac{(5x+2)(x+10)+(5x-2)(x-10)}{x(x-10)(x+10)} .\dfrac{(x-10)(x+10)}{x^2+4}\)
= \(\dfrac{5x^2+12x+20+5x^2-12x+20}{x(x^2+4)}\)
= \(\dfrac{10x^2+40}{x(x^2+4)}\)
= \(\dfrac{10(x^2-4)}{x(x^2-4)}\)
= \(\dfrac{10}{x}\)
Thay x = 20040 vào biểu thức, ta có:
\(\dfrac{10}{20040}\) = \(\dfrac{1}{2004}\)