Cho phương trình
x
2
– 2(m + 4)x +
m
2
– 8 = 0. Xác định m để phương trình có hai nghiệm
x
1
;
x
2
thỏa mãn
A
=
x
1
+
x
2
−
3
x
1
x
2
đạt giá trị lớn nhất A.
m
=
1
3
B.
m
=
−
1
3
C. m = 3 D. m =...
Đọc tiếp
Cho phương trình x 2 – 2(m + 4)x + m 2 – 8 = 0. Xác định m để phương trình có hai nghiệm x 1 ; x 2 thỏa mãn A = x 1 + x 2 − 3 x 1 x 2 đạt giá trị lớn nhất
A. m = 1 3
B. m = − 1 3
C. m = 3
D. m = −3
Phương trình x 2 – 2(m + 4)x + m 2 – 8 = 0 có a = 1 ≠ 0 và
∆ ' = ( m + 4 ) 2 – ( m 2 – 8 ) = 8 m + 24
Phương trình có hai x 1 ; x 2 ⇔ ∆ ' ≥ 0 ⇔ 8 m + 24 ≥ 0
Áp dụng định lý Vi – ét ta có x 1 + x 2 = 2 ( m + 4 ) ; x 1 . x 2 = m 2 – 8
Ta có:
A = x 1 + x 2 − 3 x 1 x 2
= 2 (m + 4) – 3 ( m 2 – 8) = 3 m 2 + 2m + 32 = − 3 m 2 − 2 3 m − 32 3
= − 3 m − 1 3 2 + 97 3
Nhận thấy A ≤ 97 3 và dấu “=” xảy ra khi m − 1 3 = 0 ⇔ m = 1 3 (TM)
Vậy giá trị lớn nhất của A là 97 3 khi m = 1 3
Đáp án: A