K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2022

mình thấy đề nó sai sai

Cho tam giác ABC cân tại A ( ), trên cạnh BC lấy 2 điểm D và E sao cho BD = DE = EC. Kẻ ; , BH cắt CK tại G. a) Chứng minh tam giác ADE cân b) Chứng minh BH = CK c) Gọi M là trung điểm của BC, chứng minh A, M, G thẳng hàng d) Chứng minh AC > AD

kẻ BH với CK như nào cũng được hay BH⊥AC;CK⊥AB hay H là trung điểm của AC,K là trung điểm của AB

13 tháng 11 2021

Xét tứ giác KHED có KD//EH

nên KHED là hình thang

giair giúp sẽ được k

xét tam giác BAM và CAM có:

AB=AC ( tam giác ABC cân tại A)

AM chung

BM=CM (vì m là trung điểm của BC)

=> tam giác BAM = tam giác CAM (c.c.c)

=> góc AMB = góc AMC (góc tương ứng)

ta có:  goác AMB + góc AMC = 1800 (kề bù)

                => 2 góc AMB = 1800

                  => góc AMB = 1800 : 2 = 900

                  => AM vuông góc BC

4 tháng 3 2018

Bạn tìm câu hỏi tương tự thì nó có bạn nhé

ngại gõ quá :)

24 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath

14 tháng 4 2020

Bạn kt lại đề nha

14 tháng 4 2020

 Đề bài nó bị hư cấu thế nào ý :)

Kiểm tra lại đi bạn .

Bài 1:

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

mà AB>AC

nên BD>CD

10 tháng 8 2022

loading...

18 tháng 4 2021

a) Ta có: ˆABD+ˆABC=1800ABD^+ABC^=1800(hai góc kề bù)

ˆACE+ˆACB=1800ACE^+ACB^=1800(hai góc kề bù)

mà ˆABC=ˆACBABC^=ACB^(hai góc ở đáy của ΔABC cân tại A)

nên ˆABD=ˆACEABD^=ACE^

Xét ΔABD và ΔACE có

AB=AC(ΔABC cân tại A)

ˆABD=ˆACEABD^=ACE^(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Ta có: AD=AE(cmt)

nên A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MD=ME(M là trung điểm của DE)

nên M nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của DE

AMDE⇔AM⊥DE

hay AMBCAM⊥BC(đpcm)

NM
8 tháng 1 2021

A B C D E ta có 

\(\hept{\begin{cases}AB=AC\\\widehat{ABD}=\widehat{ACE}\\\widehat{BAD}=\widehat{CAE}\end{cases}\Rightarrow\Delta ABD=}\Delta ACE\left(c.g.c\right)\Rightarrow EC=EA\)

mà ta có \(\widehat{DAE}=\widehat{BAC}-\widehat{DAB}-\widehat{CAE}=120^0-30^0-30^0=60^0\)

do đó tam giác AEC cân và có một góc bằng 60 độ nên AEC đêu nên AE=EC=CA

mà  ta có 

\(\widehat{BAD}=\widehat{ABD}=30^0\Rightarrow BD=DA\) tương tự ta chúng minh được \(AE=EC\Rightarrow BD=DC=CE\)