K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2015

A = |x|2 + 4xy - 3y. |y|2 = 25 + 4xy - 3y 

+ Nếu x = 5; y = 1 => A = 25 + 4.5.1 - 3.1 = 42

+ Nếu x = 5; y = -1 => A = 25 + 4.5. (-1) - 3.(-1) = 8

+ Nếu x = -5 ; y = 1 => A = 25 + 4.(-5).1 - 3.1 = 2

+ Nếu x = -5; y = -1 => A = 25 + 4.(-5). (-1) - 3.(-1) = 48

4 tháng 7 2018

\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)

\(=2x^2-6xy-4xy+8y-2x^2-6y-8xy\)

\(=2x^2-10xy+8y-2x^2-14xy\)

\(=10xy+8y-14xy\)

\(=-4xy+8y\)

\(=-4.\left(\frac{-2}{3}.\frac{3}{4}\right)+8.\frac{3}{4}\)

\(=-4.\frac{-1}{2}+6\)

\(=2+6=8\)

4 tháng 7 2018

\(2x^2-6xy-4xy-8y-2x^2+6y+8xy\)

\(=-2y-2xy\)

thay \(x=\frac{-2}{3};y=\frac{3}{4}\) vào biểu thức ta có

\(-2.\frac{3}{4}-2.\frac{-2}{3}\frac{3}{4}=\frac{-3}{2}+1=\frac{-3+2}{2}=\frac{-1}{2}\)

nếu có sai bn thông cảm

4 tháng 7 2018

\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)

\(=2x^2-3y-4xy+8y-2x^2+3y+4xy\)

\(=-2y-2xy\)

Thay x,y ta có:

\(-2y-2xy=-2\left(\frac{3}{4}\right)-2\left(\frac{-2}{3}.\frac{3}{4}\right)\)

\(-2y-2xy=\frac{-3}{2}-2.\frac{-1}{2}\)

\(-2y-2xy=\frac{-3}{2}-\left(-1\right)\)

\(-2y-2xy=\frac{-3}{2}+1=\frac{-3}{2}+\frac{2}{2}=\frac{-1}{2}\)

Vậy biểu thức trên có giá trị bằng \(\frac{-1}{2}\)

4 tháng 7 2018

khó quá bạn ơi !

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

10 tháng 7 2017

Vì |x|=5 =>x=5 hoặc x=(-5)

Vì |y|=1 =>y=hoặc y=(-1)

Nếu x=5,y=1 ta có:

A= 52+4.5.1-3.(1)3

  =25+20-3

  =42

Nếu x=5,y=(-1) ta có:

A= 52+4.5.(-1)-3.(-1)3

   =25+(-20)-(-3)

   =8

Nếu x=(-5),y=1 ta có:

A=(-5)2+4.(-5).1-3.(1)3

   =25+(-20)-3

   =2

Nếu x=(-5),y=(-1) ta có:

A=(-5)2+4.(-5).(-1)-3.(-1)3

  =25+20-(-3)

  =48

Vậy với |x|=5,|y|=1 thì A có 4 kết quả sau:42; 8;2;48.

Mik làm vậy cũng không bt đúng sai,kết quả thì bạn tính lại thử xem..Chúc học giỏi.......^^

a: F=9/25x^2y^4*20/27x^3y=4/15x^5y^5

Bậc: 10

b: y=-x/3 và x+y=2

=>x+y=2 và -1/3x-y=0

=>x=3 và y=-1

Khi x=3 và y=-1 thì F=4/15*(-3)^5=-324/5

12 tháng 4 2021

Đặt bthuc = A nhé

ĐKXĐ : \(2x\ne3y\)

\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)

\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)

\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)

Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3