K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

\(\hept{\begin{cases}\frac{x}{y}=\frac{4}{5}\\\frac{x}{z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{y}=\frac{12}{15}\\\frac{x}{z}=\frac{12}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=12\\y=15\\z=8\end{cases}}}\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 8 2023

\(A=\dfrac{x^{\dfrac{5}{4}}y+xy^{\dfrac{5}{4}}}{\sqrt[4]{x}+\sqrt[4]{y}}\\ =\dfrac{xy\left(x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}\right)}{x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}}\\ =xy\)

\(B=\left(\sqrt[7]{\dfrac{x}{y}\sqrt[5]{\dfrac{y}{x}}}\right)^{\dfrac{35}{4}}\\= \left(\sqrt[7]{\dfrac{x}{y}\cdot\left(\dfrac{x}{y}\right)^{-\dfrac{1}{5}}}\right)^{\dfrac{35}{4}}\\ =\left(\sqrt[7]{\left(\dfrac{x}{y}\right)^{\dfrac{4}{5}}}\right)^{\dfrac{35}{4}}\\ =\left[\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}}\right]^{\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}\cdot\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^1\\ =\dfrac{x}{y}\)

25 tháng 3 2018

Bài 1 : 

Ta có : 

\(A=\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(A=\frac{3\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(A=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(A=\frac{3}{5}+\frac{2}{5}\)

\(A=1\)

\(b)\) Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Đo đó : 

\(\frac{y+z-x}{x}=2\)\(\Rightarrow\)\(y+z=3x\)\(\left(1\right)\)

\(\frac{z+x-y}{y}=2\)\(\Rightarrow\)\(x+z=3y\)\(\left(2\right)\)

\(\frac{x+y-z}{z}=2\)\(\Rightarrow\)\(x+y=3z\)\(\left(3\right)\)

Lại có : \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thay (1), (2) và (3) vào \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\) ta được : 

\(B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(B=8\)

Chúc bạn học tốt ~ 

25 tháng 3 2018

bạn phùng minh quân câu 1 a tại sao lại rút gọn được \(\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}=\frac{3}{5}\) vậy nó không cùng nhân tử mà 

câu b \(\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{\left(y-y+y\right)+\left(-x+x+x\right)+\left(z+z-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)sao lại ra bằng 2

(mình chỉ góp ý thôi nha tại mình làm thấy nó sai sai) 

24 tháng 7 2018

mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau

1)  Áp dụng tính chất dãy tỉ số bằng nhau ta có     

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)

suy ra:  \(\frac{x}{3}=2\)=>  \(x=6\)

            \(\frac{y}{4}=2\)=>  \(y=8\)

Vậy...

2)  Áp dụng tính chất dãy tỉ số bằng nhau ta có:

   \(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)

suy ra:  \(\frac{x}{5}=10\)=>  \(x=50\)

             \(\frac{y}{3}=10\)=>  \(y=30\)

Vậy...

1 tháng 6 2017

Bài 1: 

\(B=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)\(=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{2}\left(\frac{1}{2}+\frac{3}{4}-\frac{5}{6}\right)}+\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{8}\right)}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\) 

\(=\frac{1}{\frac{1}{2}}+3\)  \(=2+3\) \(=5\)

                                                  Vậy B=5

Bài 2:

a) x3 - 36x = 0  

=>  x(x2-36)=0

=>  x(x2+6x-6x-36)=0 

=> x[x(x+6)-6(x+6) ]=0

=> x(x+6)(x-6)=0

\(\Rightarrow\orbr{\begin{cases}^{x=0}x+6=0\\x-6=0\end{cases}}\)

 \(\Rightarrow\orbr{\begin{cases}^{x=0}x=-6\\x=6\end{cases}}\)

                                  Vậy x=0; x=-6; x=6

b)  (x - y = 4 => x=4+y)

 x−3y−2 =32  

=>2(x-3) = 3(y-2)

=>2x-6= 3y-6

=>2x-3y=0

=>2(4+y)-3y=0

=>8+2y-3y=0

=>8-y=0

=>y=8 (thỏa mãn)

Do đó x=4+y=4+8=12 (thỏa mãn)

         Vậy x=12 và y =8

1 tháng 6 2017

B= 1/2 + 3/4 - 5/6/1/2(1.2 + 3/4 - 5/6) + 3(1/4+ 1/5 - 1/8)/ 1/4  1/5 - 1/8 

B= 1/ 1/2 + 3

B= 2+3

B=5

B2:

a) x^3 - 36x = 0

x(x^2 - 36) = 0

=> x=0  hoặc x^2-36=0

=> x= 0 hoặc x^2=36

=> x=0 hoặc x= +- 6

28 tháng 8 2015

bạn đúng đề:

\(\frac{x-5}{3}=\frac{y-4}{4}=\frac{z-3}{5}=\frac{x-5+y-4+z-3}{3+4+5}=\frac{36}{12}=3\)

\(\frac{x-5}{3}=3=\frac{x}{3}=3=9\Rightarrow x-5=9=14\Rightarrow x=14\)

\(\frac{y-4}{4}=3=\frac{y}{4}=3=12\Rightarrow y-4=12\Rightarrow16\)=> y=16

\(\frac{z-3}{5}=3=\frac{z}{5}=3=15\Rightarrow z-3=15=18\Rightarrow z=18\)

15 tháng 9 2019

a, \(\frac{x}{4}=\frac{y}{5}\) và x + y = 4

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{4}{9}\)

=> \(\hept{\begin{cases}\frac{x}{4}=\frac{4}{9}\\\frac{y}{5}=\frac{4}{9}\end{cases}}\Rightarrow\hept{\begin{cases}9x=16\\9y=20\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{16}{9}\\y=\frac{20}{9}\end{cases}}\)

b, \(\frac{x}{6}=\frac{y}{3}\) và x - 2y = 5

Ta có : \(\frac{x}{6}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{2y}{6}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{6}=\frac{2y}{6}=\frac{x-2y}{6-6}=\frac{5}{0}\) vô lý

c, \(\frac{x}{3}=\frac{y}{7}\) và x - 5y = 4

Ta có : \(\frac{x}{3}=\frac{y}{7}\)=> \(\frac{x}{3}=\frac{5y}{35}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{5y}{35}=\frac{x-5y}{3-35}=\frac{4}{-32}=\frac{-4}{32}=\frac{-1}{8}\)

=> \(\hept{\begin{cases}\frac{x}{3}=\frac{-1}{8}\\\frac{y}{7}=\frac{-1}{8}\end{cases}\Rightarrow}\hept{\begin{cases}8x=-3\\8y=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{8}\\x=-\frac{7}{8}\end{cases}}\)

d, Tương tự áp dụng như bài a,c

7 tháng 11 2018

a)\(x-\frac{3}{5}=\frac{3}{5}\)

\(\Rightarrow x=\frac{3}{5}+\frac{3}{5}=\frac{6}{5}\)

b)\(|x|-\frac{4}{5}=\frac{2}{3}\\ \Rightarrow|x|=\frac{2}{3}+\frac{4}{5}=\frac{22}{15}\\ \Rightarrow|x|=\frac{22}{15}\\ \Rightarrow x=\frac{22}{15}\)

c)\(\frac{x}{-5}=\frac{24}{15}\\ \Rightarrow x=\frac{-5\cdot24}{15}=-8\)

d)\(\frac{x}{4}=\frac{y}{5} và x-y=21\)

Theo tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{21}{-1}=-21\)

Do đó :

\(\frac{x}{4}=-21\Rightarrow x=-84\)

\(\frac{y}{5}=-21\Rightarrow y=-105\)

7 tháng 11 2018

\(x-\frac{3}{5}=\frac{3}{5}\)

\(x=\frac{3}{5}+\frac{3}{5}\)

\(x=\frac{6}{5}\)

\(\left|x\right|-\frac{4}{5}=\frac{2}{5}\)

\(\left|x\right|=\frac{2}{5}+\frac{4}{5}\)

\(\left|x\right|=\frac{6}{5}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=-\frac{6}{5}\end{cases}}\)

\(\frac{x}{-5}=\frac{24}{15}\)

\(\Rightarrow x.15=\left(-5\right).24\)

\(\Rightarrow x.15=-120\)

\(\Rightarrow x=-120:15\)

\(\Rightarrow x=-8\)

14 tháng 7 2016

a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)

\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)

14 tháng 7 2016

b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)

\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)