K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

ta có \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x}{14}=\dfrac{y}{35}\)

\(\dfrac{y}{7}=\dfrac{z}{4}=\dfrac{y}{35}=\dfrac{z}{20}\)

=>\(\dfrac{x}{14}=\dfrac{y}{35}=\dfrac{z}{20}\) và x+y-z=58

Áp dụng dãy tỉ số bằng nhau ta có

\(\dfrac{x}{14}=\dfrac{y}{35}=\dfrac{z}{20}=\dfrac{x+y-z}{14+35-20}=\dfrac{58}{29}=2\)

=>\(\dfrac{x}{14}=2\Rightarrow x=28\)

\(\dfrac{y}{35}=2\Rightarrow2=70\)

\(\dfrac{z}{20}=2\Rightarrow z=40\)

vậy.....

NV
4 tháng 8 2021

a.

Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=3k\\z=4k\end{matrix}\right.\)

Thế vào \(2x+y-z=81\)

\(\Rightarrow2.5k+3k-4k=81\)

\(\Rightarrow9k=81\)

\(\Rightarrow k=9\)

\(\Rightarrow\left\{{}\begin{matrix}x=5k=45\\y=3k=27\\z=4k=36\end{matrix}\right.\)

b.

Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\\z=2k\end{matrix}\right.\)

Thế vào \(5x-y+3z=124\)

\(\Rightarrow5.3k-5k+3.2k=124\)

\(\Rightarrow16k=124\)

\(\Rightarrow k=\dfrac{31}{4}\) \(\Rightarrow\left\{{}\begin{matrix}x=3k=\dfrac{93}{4}\\y=5k=\dfrac{155}{4}\\z=2k=\dfrac{31}{2}\end{matrix}\right.\)

NV
4 tháng 8 2021

c.

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

Thế vào \(xyz=810\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k=6\\y=3k=9\\z=5k=15\end{matrix}\right.\)

9 tháng 9 2023

\(\dfrac{2}{5}\) x y : \(\dfrac{7}{4}\) = \(\dfrac{7}{8}\)

\(\dfrac{2}{5}\) x y = \(\dfrac{7}{8}\) x \(\dfrac{7}{4}\)

 \(\dfrac{2}{5}\) x y = \(\dfrac{49}{32}\)

         y = \(\dfrac{49}{32}\) : \(\dfrac{2}{5}\)

         y = \(\dfrac{245}{64}\)

9 tháng 9 2023

2\(\dfrac{2}{5}\): y x 1\(\dfrac{1}{4}\) = 2\(\dfrac{3}{5}\)

\(\dfrac{12}{5}\): y x \(\dfrac{5}{4}\) = \(\dfrac{13}{5}\)

\(\dfrac{12}{5}\): y        = \(\dfrac{13}{5}\)\(\dfrac{5}{4}\)

 \(\dfrac{12}{5}\): y = \(\dfrac{52}{25}\)

        y = \(\dfrac{12}{5}\)\(\dfrac{52}{25}\)

        y = \(\dfrac{15}{13}\)

 

a) Ta có: \(\left\{{}\begin{matrix}\dfrac{5}{x-1}+\dfrac{1}{y-1}=10\\\dfrac{1}{x-1}-\dfrac{3}{y-1}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x-1}+\dfrac{1}{y-1}=10\\\dfrac{5}{x-1}-\dfrac{15}{y-1}=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{16}{y-1}=-80\\\dfrac{1}{x-1}-\dfrac{3}{y-1}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-1=\dfrac{-1}{5}\\\dfrac{1}{x-1}=18+\dfrac{3}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{5}\\x-1=\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{4}{5}\end{matrix}\right.\)

12 tháng 11 2017

đúng rùi đó

2 tháng 12 2017

1) a) \(\dfrac{x^2-y^2}{x^3}+y^{^3}.\left(\dfrac{xy-x^2-y^2}{y}.\dfrac{xy}{y-x}\right)\)

\(=\dfrac{x^2-y^2}{x^3}+y^3.\dfrac{x\left(xy-x^2-y^2\right)}{y-x}\)

\(=\dfrac{x^2-y^2}{x^3}+\dfrac{xy^3\left(xy-x^2-y^2\right)}{y-x}\)

\(=\dfrac{-\left(x-y\right)^2\left(x+y\right)+xy^3\left(xy-x^2-y^2\right)}{x^3\left(y-x\right)}\)

Cậu tự thu gọn nốt nhé , tớ sắp đi hok

2 tháng 12 2017

Bài 2 . Theo giả thiết : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

=> \(\dfrac{yz+xz+xy}{xyz}=\dfrac{1}{x+y+z}\)

=> \(\left(x+y+z\right)\left(yz+zx+xy\right)=xyz\)

=>\(x\left(yz+xz+xy\right)+y\left(yz+xz+xy\right)+z\left(yz+xz+xy\right)-xyz=0\)=> \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

Ta có :

* x = - y

* y = -z

* x = -z

Áp dụng đều này vào phân thức cần CM , ta có :

TH1 . x = -y

\(\dfrac{1}{\left(-y\right)^5}+\dfrac{1}{y^5}+\dfrac{1}{z^5}=\dfrac{1}{\left(-y\right)^5+y^5+z^5}\)

=> \(\dfrac{1}{z^5}=\dfrac{1}{z^5}\), luôn đúng

Tương tự thử với các trường hợp còn lại ta cũng sẽ có được đpcm

15 tháng 9 2021

\(\dfrac{x}{2}=\dfrac{y}{3}\text{⇒}\dfrac{x}{10}=\dfrac{y}{15}\)

\(\dfrac{y}{5}=\dfrac{z}{4}\text{⇒}\dfrac{y}{15}=\dfrac{z}{12}\)

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-21}{-3}=7\)

⇒x=70;y=105;z=84

15 tháng 9 2021

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}=\dfrac{x^2-2y^2+z^2}{4-18+25}=\dfrac{44}{11}=4\)

⇒x=8;y=12;z=20

9 tháng 5 2022

Bài 1:

+) \(\dfrac{7}{8}\times y=\dfrac{3}{2}+\dfrac{6}{4}=3\)

\(y=3:\dfrac{7}{8}=\dfrac{24}{7}\)

+) \(\dfrac{1}{y}\times\left(\dfrac{2}{5}+\dfrac{1}{5}\right)=\dfrac{10}{3}\)

\(\dfrac{1}{y}=\dfrac{10}{3}:\dfrac{3}{5}=\dfrac{50}{9}\)

\(y=\dfrac{9}{50}\)

9 tháng 5 2022

Bài 2:

+) \(=\dfrac{2}{5}\times\left(\dfrac{4}{7}+\dfrac{3}{7}\right)\)

\(=\dfrac{2}{5}\times\dfrac{7}{7}=\dfrac{2}{5}\)

+) \(\dfrac{2}{9}:\dfrac{2}{3}:\dfrac{3}{9}\)

\(\dfrac{2}{9}\times\dfrac{3}{2}\times\dfrac{9}{3}=1\)

3 tháng 8 2023

\(a,2\dfrac{2}{5}:y\times1\dfrac{3}{4}=\dfrac{7}{8}\\ \dfrac{12}{5}:y\times\dfrac{7}{4}=\dfrac{7}{8}\\ \dfrac{12}{5}:y=\dfrac{7}{8}:\dfrac{7}{4}\\ \dfrac{12}{5}:y=\dfrac{1}{2}\\ y=\dfrac{12}{5}:\dfrac{1}{2}=\dfrac{24}{5}\\ b,3\dfrac{2}{5}:y:1\dfrac{1}{4}=2\dfrac{3}{5}\\ \dfrac{17}{5}:y:\dfrac{5}{4}=\dfrac{13}{5}\\ y:\dfrac{5}{4}=\dfrac{17}{5}:\dfrac{13}{5}\\ y:\dfrac{5}{4}=\dfrac{17}{13}\\ y=\dfrac{17}{13}\times\dfrac{5}{4}=\dfrac{85}{52}\)

3 tháng 8 2023

\(c,\dfrac{12}{5}-2\dfrac{2}{5}\times y=1\dfrac{1}{4}\\ \dfrac{12}{5}-\dfrac{12}{5}\times y=\dfrac{5}{4}\\ \dfrac{12}{5}\times y=\dfrac{12}{5}-\dfrac{5}{4}\\ \dfrac{12}{5}\times y=\dfrac{23}{20}\\ y=\dfrac{23}{20}:\dfrac{12}{5}\\ y=\dfrac{23}{48}\)

14 tháng 7 2023

2: y \(\times\) \(\dfrac{3}{5}\) = \(\dfrac{9}{10}\)

2:y =  \(\dfrac{9}{10}\) : \(\dfrac{3}{5}\) 

2: y = \(\dfrac{3}{2}\)

    y = 2 : \(\dfrac{3}{2}\)

     y = \(\dfrac{4}{3}\)

\(\dfrac{5}{4}\) - \(\dfrac{2}{5}\) : y = 1

      \(\dfrac{2}{5}\) : y = \(\dfrac{5}{4}\) - 1

       \(\dfrac{2}{5}\): y = \(\dfrac{1}{4}\)

             y = \(\dfrac{2}{5}\) : \(\dfrac{1}{4}\)

            y = \(\dfrac{8}{5}\)

\(\dfrac{3}{4}\) \(\times\) ( \(\dfrac{7}{2}\) - y) = \(\dfrac{3}{2}\)

           \(\dfrac{7}{2}\) - y = \(\dfrac{3}{2}\) : \(\dfrac{3}{4}\)

            \(\dfrac{7}{2}\) - y = 2

                   y = \(\dfrac{7}{2}\) - 2

                   y = \(\dfrac{3}{2}\)

   

 

a: Áp dụng tính chất của DTSBN, ta được:

x/5=y/2=(x-y)/(5-2)=9/3=3

=>x=15; y=6

b: =>(x-3)/12=3/(x-3)

=>(x-3)^2=36

=>(x-9)(x+3)=0

=>x=9 hoặc x=-3

c; x/2=y/3

=>x/10=y/15

y/5=z/4

=>y/15=z/12

=>x/10=y/15=z/12=(x-y-z)/(10-15-12)=-49/-17=49/17

=>x=490/17; y=735/17; z=588/17