Bài 1: \(x\in Q\)\(;\)\(x\ne0\).Tìm điều kiện của x để \(x^2\)< x
Bài 2:tìm x,y:
a)/ \(x-3y\)/+\(\left(2x+5\right)^2=0\)
b)\(\left(4y+5\right)^4+9.\)/\(3x-4y\)/=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1L
a, Ta có: \(18\inƯ\left(x-2\right)\)
=> x - 2 = 18.k ( k \(\inℤ\))
=> x = 18.k + 2
Vậy: x =18.k + 2
b, Ta có: \(x+1\inƯ\left(x^2+x+3\right)\)
\(\Rightarrow x^2+x+3⋮x+1\)
\(\Rightarrow x\left(x+1\right)+3⋮x+1\)
=> 3 \(⋮\)x + 1 ( vì: x(x+1) \(⋮\)x+1 )
=> \(x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-4;-2;0;2\right\}\)
Vậy:......
Bài 2:
a, Ta có: ( x+3 ) ( x + y - 5 ) = 7
=> x + 3 và x + y - 5 \(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng:
x+3 | -7 | -1 | 1 | 7 |
x+y-5 | -1 | -7 | 7 | 1 |
x | -10 ( loại vì x là STN ) | -4 ( loại vì x là STN ) | -2 ( loại vì x là STN ) | 4 |
y | 14 | 2 | 14 | 2 |
Vậy có 1 cặp ( x;y ) cần tìm như trên bảng.
b, Ta có: xy + y +x = 10
=> x(y+1) = 10 - y
=> x = (10-y) / (y+1)
VÌ: x là STN => (10-y) / (y+1) là STN
=> 10 - y \(⋮\)y + 1
=> y - 10 \(⋮\)y + 1
=> ( y + 1 ) - 11 \(⋮\)y + 1
=> 11 \(⋮\)y + 1 ( vì y + 1 \(⋮\)y + 1 )
=> y + 1 \(\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow y\in\left\{-12;-2;0;10\right\}\)Vì y là STN nên y = 0 hoặc y = 10
với y = 0 => x = 10
với y = 10 => x = 0
Vậy:....
Số số hạng là :
(2x - 2) : 2 + 1 = x - 1 + 1 = x (số)
Tổng là :
(2x + 2).x : 2 = 210
=> (2x2 + 2x) : 2 = 210
=> x2 + x = 210
=> x(x + 1) = 210
=> x(x + 1) = 20.21
=> x = 20
Vậy x = 20
Ta có : \(\frac{x}{2}=\frac{10}{x+1}\)
=> x(x + 1) = 10.2
=> x(x + 1) = 20
=> sai đề
Bài 5 :
Ta có : \(x+3⋮x+2\)
\(\Leftrightarrow x+2+1⋮x+2\)
\(\Leftrightarrow1⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{-3;-1\right\}\)
Vậy ...
Bài 6 :
Ta có : \(2x+7⋮x+1\)
\(\Leftrightarrow2\left(x+1\right)+5⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow x\in\left\{0;-2;-6;4\right\}\)
Vậy ...
số cặp x,y là :
N :2 = ??
đ/s:.......
số cặp x,y,z là :
N* :3=?
Câu 1) a) ĐKXĐ \(x\ge0,\)\(x\ne4\)A=\(\frac{x+2\sqrt{x}-4}{2\left(x-4\right)}\)b) Mình chưa làm được Câu 2) a) ĐKXĐ \(x>0,\)\(x\ne4\)A=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)b) Để a<\(\frac{1}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\)\(\Rightarrow x< 1\)\(\Rightarrow0< x< 1\)thỏa mãn bài toán c) Ta có A=\(\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\), để A \(\in Z\)\(\Rightarrow\sqrt{x}\inƯ\left(1\right)\), \(\Rightarrow x=1\)( thỏa mãn ĐK)
bài 2
a)5x -1 chia hết x +2
=> 5x -1 - 5( x + 2) chia hết x+2
=> 5x -1 - 5x -10 chia hết x+2
=> - 11 chia hết x +2
=> x + 2 thuộc Ư (11)
=> x+2 thuộc { 1 ; -1 ;11 ; -11 }
=> x thuộc {-1 ; -3 ; 9 ; -13 }
Bài 1:
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}\)\(=\frac{11}{48}\)
\(\frac{1}{4}.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(x-1\right).x}\right)\)\(=\frac{11}{48}\)
\(\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x-1}-\frac{1}{x}\right)\)\(=\frac{11}{48}\)
\(\frac{1}{4.}.\left(1-\frac{1}{x}\right)=\frac{11}{48}\)
\(1-\frac{1}{x}=\frac{11}{48}:\frac{1}{4}\)
\(1-\frac{1}{x}=\frac{11}{12}\)
\(\frac{1}{x}=1-\frac{11}{12}\)
\(\frac{1}{x}=\frac{1}{12}\)
Vậy x= 12
Bài 2 :
Xét vế trái ta có :
\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{\left(3n-1\right).\left(3n+2\right)}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\frac{1}{2\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)
VẾ TRÁI ĐÚNG BẰNG VẾ PHẢI .ĐẲNG THỨC ĐÃ CHỨNG TỎ LÀ ĐÚNG
cHÚC BẠN HỌC TỐT ( -_- )
Bài 1:
a)\(\frac{x}{5}=\frac{-3}{y}\Rightarrow xy=-15\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 15) (1; -15) (-3; 5) (3; -5)
b)\(\frac{-11}{x}=\frac{y}{3}\Rightarrow xy=-33\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 33) (1; -33) (3; -11) (-3; 11)
Bài 2: Ở đây mình vẫn chưa hiểu về cặp số nguyên
a) Để M là số nguyên thì x + 2 chia hết cho 3. Vậy ta có các số: x \(\in\){...; -5; -2; 1; 4; 7; 10; ...}
b) Để N là số nguyên thì 7 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{2;0;8;-6\right\}\)
Vậy \(x\in\left\{2;0;8;-6\right\}\)
c) Để D là số nguyên thì x + 1 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1). Đặt tính chia (bạn tự đặt do mình không cách đặt tính chia trên olm) ta có:
(x + 1) : (x - 1) = 1 (dư 2)
Để D là số nguyên thì 2 chia hết cho x - 1\(\Rightarrow x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{2;0;3;-1\right\}\)
Vậy \(x\in\left\{2;0;3;-1\right\}\)
câu 1:
điều kiện để x2 <x là :
ko có điều kiện nào