K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 2 2017

Lời giải:

Vì phương trình có nghiệm \(z_1=-1+i, z_2=-1-i\) nên bằng định lý Viete đảo ta có một nhân tử của phương trình là \(z^2+2z+2\)

Do đó dễ dàng phân tích phương trình trên như sau:

\(z^4+4z^3+11z^2+14z+10=0\)

\(\Leftrightarrow (z^2+2z+2)(z^2+2z+5)=0\)

\(\Rightarrow \left\{\begin{matrix} z^2+2z+2=0\\ z^2+2z+5=0\end{matrix}\right.\Rightarrow \) \(\left[\begin{matrix}z=-1+i\\z=-1-i\\z=-1+2i\\z=-1-2i\end{matrix}\right.\)

22 tháng 2 2017

bạn giỏi thậtyeu

24 tháng 2 2019

đa thức ko có nghiệm nguyên

24 tháng 2 2019

BẠN CÓ THỂ NÓI CỤ THỂ KHÔNG??????

16 tháng 3 2018

Chọn C.

+ Ta có

Do đó 

Theo giả thiết ta có ( 8 + 16i) 2 + 8b( 8 + 16i) + 64c = 0

Tương đương: ( 1 + 2i) 2 + b( 1 + 2i) + c = 0

Hay ( 2b + 4)i + b + c – 3 = 0

Ta có hệ 

Khi đó: 

6 tháng 8 2018

Đáp án B

z 2 + 6 z + 13 = 0 ⇔ z = − 3 ± 2 i ⇒ z 1 = − 3 − 2 i z 2 = − 3 + 2 i w = z 1 + 2 z 2 = − 9 + 2 i

23 tháng 11 2019

Đáp án B

z 2 + 6 z + 13 = 0 ⇔ z = − 3 ± 2 i ⇒ z 1 = − 3 − 2 i z 2 = − 3 + 2 i w = z 1 + 2 z 2 = − 9 + 2 i

24 tháng 1 2019

Chọn đáp án B

23 tháng 8 2019

Đáp án B.

Phương pháp giải: Giải phương trình bậc hai tìm nghiệm phức

Lời giải:

Ta có:

 

Vậy  

8 tháng 12 2018

Đáp án B

21 tháng 3 2019

Đáp án B.

21 tháng 6 2018