Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do một cặp NST không phân li trong quá trình giảm phân, các cặp khác phân li bình thường, tạo thành giao tử n+1 kết hợp với giao tử bình thường n sẽ thành cơ thể 2n +1
Gọi số cần tìm có dạng là \(\overline{ab}\)
Nếu viết thêm chữ số 0 vào giữa hai chữ số thì ta được số mới gấp 6 lần số cũ nên \(\overline{a0b}=6\cdot\overline{ab}\)
=>\(100a+b=6\cdot\left(10a+b\right)\)
=>100a+b=60a+6b
=>40a=5b
=>8a=b
=>b=8; a=1
Vậy: Số cần tìm là 18
a: Để hệ có nghiệm duy nhất thì \(\dfrac{3}{2}\ne\dfrac{a}{1}\)
=>\(a\ne1,5\)
b: Để hệ vô nghiệm thì \(\dfrac{3}{2}=\dfrac{a}{1}\ne\dfrac{5}{b}\)
=>\(\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b\ne\dfrac{10}{3}\end{matrix}\right.\)
c: Để hệ có vô số nghiệm thì \(\dfrac{3}{2}=\dfrac{a}{1}=\dfrac{5}{b}\)
=>\(\left\{{}\begin{matrix}a=1\cdot\dfrac{3}{2}=\dfrac{3}{2}\\b=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\end{matrix}\right.\)
Bài 7:
a: \(\dfrac{11}{13}=\dfrac{110}{130};\dfrac{12}{13}=\dfrac{120}{130}\)
=>4 phân số nằm giữa 11/13 và 12/13 là \(\dfrac{111}{130};\dfrac{112}{130};\dfrac{113}{130};\dfrac{116}{130}\)
b: \(\dfrac{15}{17}=\dfrac{150}{170};\dfrac{15}{16}=\dfrac{150}{160}\)
=>5 phân số nằm giữa 15/17 và 15/16 là \(\dfrac{150}{169};\dfrac{150}{168};\dfrac{150}{167};\dfrac{150}{165};\dfrac{150}{153}\)
Bài 11:
\(a)x\times12,8=6,4\\ x=6,4:12,8\\ x=\dfrac{1}{2}\\ b)17,3:x=69,2\\ x=17,3:69,2\\ x=\dfrac{1}{4}\\ c)16,48\times x=4,12\\ x=4,12:16,48\\ x=\dfrac{1}{4}\\ d)x:12,8=1,6\\ x=12,8\times1,6\\ x=\dfrac{512}{25}\)
Bài 11:
a: \(x\times12,8=6,4\)
=>\(x=\dfrac{6.4}{12.8}=\dfrac{1}{2}=0,5\)
b: \(17,3:x=69,2\)
=>\(x=\dfrac{17.3}{69.2}=0,25\)
c: \(16,48\times x=4,12\)
=>\(x=\dfrac{4.12}{16.48}=\dfrac{1}{4}=0,25\)
d: \(x:12,8=1,6\)
=>\(x=12,8\times1,6=20,48\)
Bài 9:
a: \(4,86\times0,25\times40=4,86\times10=48,6\)
b: \(0,125\times6,94\times80=6,94\times\left(80\times0,125\right)\)
=6,94x10
=69,4
c: \(96,28\times3,527+3,527\times3,72\)
=3,527x(96,28+3,72)
=3,527x100=352,7
d: \(72,9\times99+72+0,9\)
=72,9x99+72,9
=72,9x(99+1)
=72,9x100=7290
e: \(0,8\times96+1,6\times2\)
\(=0,8\times96+0,8\times4=0,8\times\left(96+4\right)\)
=0,8x100=80
d) \(A=3cm\); \(\omega=4\pi\left(rad/s\right)\); \(\varphi_0=\dfrac{\pi}{5}\left(rad\right)\)
Khi đó \(T=\dfrac{2\pi}{\omega}=0,5\left(s\right)\)
Cho \(x=1,5cm\Leftrightarrow\varphi=\pm\dfrac{\pi}{3}\left(rad\right)\)
Thời gian vật đi qua vị trí \(x=1,5cm\) lần thứ ba là:
\(T+t_d=0,5+\dfrac{\Delta\varphi_d}{2\pi}.T\)
\(=0,5+\dfrac{\dfrac{\pi}{3}-\dfrac{\pi}{5}}{2\pi}.0,5\)
\(=\dfrac{8}{15}\left(s\right)\)
e) Thời gian cần tìm là:
\(t_e+19T=\dfrac{\Delta\varphi_e}{2\pi}.T+19.0,5\)
\(=\dfrac{\dfrac{4\pi}{3}}{2\pi}.0,5+9.5=\dfrac{59}{6}\left(s\right)\)
\(D=x^2+y^2-x+6y+10\\ =\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\\ =\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\left(y^2+2\cdot y\cdot3+3^2\right)+\dfrac{3}{4}\\ =\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{matrix}\right.=>D=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x,y\)
Dấu "=" xảy ra \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
______________________________
\(F=2xy-2x^2-y^2+10x-27\\ =-\left(x^2-2xy+y^2\right)-\left(x^2-10x+25\right)-2\\ =-\left(x-y\right)^2-\left(x-5\right)^2-2\)
Ta có: \(\left\{{}\begin{matrix}\left(x-y\right)^2\le0\forall x,y\\-\left(x-5\right)^2\le0\forall x\end{matrix}\right.=>F=-\left(x-y\right)^2-\left(x-5\right)^2-2\le-2\forall x,y\)
Dấu "=" xảy ra: \(\left\{{}\begin{matrix}x-y=0\\x-5=0\end{matrix}\right.\Leftrightarrow x=y=5\)
\(A=-x^2+x-1\)
\(=-\left(x^2-x+1\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
\(B=6x-x^2-10\)
\(=-\left(x^2-6x+10\right)\)
\(=-\left(x^2-6x+9+1\right)\)
\(=-\left(x-3\right)^2-1< =-1\forall x\)
Dấu '=' xảy ra khi x-3=0
=>x=3
\(C=-x^2+5x+3\)
\(=-\left(x^2-5x-3\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{37}{4}\right)\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{4}< =\dfrac{37}{4}\forall x\)
Dấu '=' xảy ra khi x-5/2=0
=>x=5/2
\(D=x^2-x+y^2+6y+10\)
\(=x^2-x+\dfrac{1}{4}+y^2+6y+9+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
\(F=2xy-2x^2-y^2+10x-27\)
\(=-\left(2x^2+y^2-2xy-10x+27\right)\)
\(=-\left(x^2-2xy+y^2+x^2-10x+25+2\right)\)
\(=-\left(x-y\right)^2-\left(x-5\right)^2-2< =-2\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=x=5\end{matrix}\right.\)
1: \(\dfrac{-2}{3}+\dfrac{3}{4}-\dfrac{-1}{6}+\dfrac{-2}{5}\)
\(=-\dfrac{40}{60}+\dfrac{45}{60}+\dfrac{10}{60}-\dfrac{24}{60}\)
\(=\dfrac{5-14}{60}=-\dfrac{9}{60}=-\dfrac{3}{20}\)
2: \(\dfrac{-2}{3}+\dfrac{-1}{5}+\dfrac{3}{4}-\dfrac{5}{6}-\dfrac{-7}{10}\)
\(=\left(-\dfrac{2}{3}+\dfrac{3}{4}-\dfrac{5}{6}\right)+\left(-\dfrac{1}{5}+\dfrac{7}{10}\right)\)
\(=\left(-\dfrac{8}{12}+\dfrac{9}{12}-\dfrac{10}{12}\right)+\left(-\dfrac{2}{10}+\dfrac{7}{10}\right)\)
\(=\dfrac{-9}{12}+\dfrac{5}{10}=-\dfrac{3}{4}+\dfrac{1}{2}=-\dfrac{3}{4}+\dfrac{2}{4}=-\dfrac{1}{4}\)
3: \(\dfrac{1}{2}-\dfrac{-2}{5}+\dfrac{1}{3}+\dfrac{5}{7}-\dfrac{-1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\)
\(=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{4}{35}\right)+\dfrac{1}{41}\)
\(=\dfrac{3+2+1}{6}+\dfrac{14+25-4}{35}+\dfrac{1}{41}\)
\(=\dfrac{6}{6}+\dfrac{35}{35}+\dfrac{1}{41}=2+\dfrac{1}{41}=\dfrac{83}{41}\)
4: \(\dfrac{1}{100\cdot99}-\dfrac{1}{99\cdot98}-\dfrac{1}{98\cdot97}-...-\dfrac{1}{3\cdot2}-\dfrac{1}{2\cdot1}\)
\(=\dfrac{1}{100\cdot99}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{97\cdot98}+\dfrac{1}{98\cdot99}\right)\)
\(=\dfrac{1}{100\cdot99}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{99}-\dfrac{1}{100}-\dfrac{98}{99}=\dfrac{-97}{99}-\dfrac{1}{100}=\dfrac{-9799}{9900}\)
5: \(\dfrac{\left(\dfrac{3}{10}-\dfrac{4}{15}-\dfrac{7}{20}\right)\cdot\dfrac{5}{19}}{\left(\dfrac{1}{14}+\dfrac{1}{7}-\dfrac{-3}{35}\right)\cdot\dfrac{-4}{3}}=\dfrac{\dfrac{18-16-21}{60}\cdot\dfrac{5}{19}}{\dfrac{5+10+6}{70}\cdot\dfrac{-4}{3}}\)
\(=\dfrac{\dfrac{-19}{60}\cdot\dfrac{5}{19}}{\dfrac{21}{70}\cdot\dfrac{-4}{3}}=\dfrac{-5}{60}:\dfrac{-84}{210}=\dfrac{-1}{12}\cdot\dfrac{-5}{2}=\dfrac{5}{24}\)
6: \(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)
\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{1}{4}+\dfrac{3}{4}=\dfrac{4}{4}=1\)