Tìm x,y,z biết: \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)
và 2x2+2y2+z2=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác BEC và tam giác CDB có : BC chung
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc BEC = góc CDB = 90
=> tam giác BEC = tam giác CDB (ch-gn)
b, tam giác BEC = tam giác CDB (Câu a)
=> góc IBC = góc ICB (đn)
=> tam giác IBC cân tại I (dh)
=> BI = IC (Đn)
xét tam giác AIB và tam giác AIC có : AI chung
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác AIB = tam giác AIC (c-c-c)
=> góc BAI = góc CAI (đn) mà AI nằm giữa AB và AC
=> AI là pg của góc BAC (đn)
a, xét tam giác BEC và tam giác CDB có :
BC chung
góc ABC = góc ACB ( do tam giác ABC cân tại A )
góc BEC = góc CDB = 90độ
=> tam giác BEC = tam giác CDB (ch-gn)
b, tam giác BEC = tam giác CDB (CM câu a)
=> góc IBC = góc ICB
=> tam giác IBC cân tại I
=> BI = IC
xét tam giác AIB và tam giác AIC có :
AI chung
AB = AC ( tam giác ABC cân tại A )
=> tam giác AIB = tam giác AIC (c-c-c)
=> góc BAI = góc CAI
=> AI là pg của góc BAC
a) Xét ∆AHB,∆EMA có :
^AHB = ^EMA = 90o
AB = AE (gt)
Do đó : ∆AHB = ∆EMA (ch-gn)
b) ∆AHB = ∆EMA (ch-gn)
=> EM = AH (1)
Cmtt ta cũng có : ∆AHC = ∆FNA (Ch-Gn)
=> HC = NA (2)
Từ (1)(2) => EM + HC = AH + NA
=> EM + HC = NH (A nằm giữa H,N)
d) Có : EM _|_ AH
FN _|_ AH
=> EM // FN
bt bài này là tỉ lệ thức nhưng sau đợt nghỉ tớ vẫn nhớ đc xương xương :v
\(+,\frac{x}{y}=\frac{10}{9}=\frac{x}{10}=\frac{y}{9}\) (1)
\(+,\frac{y}{z}=\frac{3}{4}=\frac{y}{3}=\frac{z}{4}\)( 2 )
đến đây tại s nhể quên mất òi
Từ (1) ; (2) \(\Rightarrow\frac{x}{10}=\frac{y}{9};\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{10}=\frac{3y}{27};\frac{9y}{27}=\frac{z}{4}\Rightarrow\frac{x}{30}=\frac{y}{27}=\frac{z}{36}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{30}=\frac{y}{27}=\frac{z}{36}=\frac{x-2y+3z}{30-2.27+3.36}=\frac{168}{84}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{30}=2\\\frac{y}{27}=2\\\frac{z}{36}=2\end{cases}\Rightarrow\hept{\begin{cases}x=2.30=60\\y=2.27=54\\z=2.36=72\end{cases}}}\)
T hơi k hủi dòng đầu tiên của bạn ๖ۣۜʚ๖ۣۜQủү☼Dữ๖ۣۜɞ๖ۣۜ ( Cool Team ) cho lắm tại sao lại bằng nhau nhỉ
Bài làm
Ta có \(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{9};\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{9};\frac{y}{9}=\frac{z}{12}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Đặt \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=10k\\y=9k\\z=12k\end{cases}}\)
Thay x = 10k ; y = 9k ; z = 12k vào x - 2y + 3x = 168 ta có
10k - 2.9k + 3.12k = 168
<=> 10k - 18k + 36k = 168
<=> k ( 10 - 18 + 36 ) = 168
<=> k . 28 = 168
<=> k = 6
\(\Leftrightarrow\hept{\begin{cases}x=10.6=60\\y=9.6=54\\z=12.6=72\end{cases}}\)
Vậy x = 60; y = 54 và z = 72
@@ Học tốt
a, Xét △HAC vuông tại H có: CH2 + AH2 = AC2 (định lý Pytago)
=> (9,6)2 + (7,2)2 = AC2 => 92,16 + 51,84 = AC2 => AC2 = 144 => AC = 12 (cm)
b, Ta có: \(S_{\text{△}ABC}=\frac{AC.AB}{2}\)
Và \(S_{\text{△}ABC}=\frac{AH.BC}{2}\)
\(\Rightarrow\frac{AC.AB}{2}=\frac{AH.BC}{2}\)( = S△ABC)
=> AC . AB = AH . BC (đpcm)
Ta có: \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)
\(\Leftrightarrow x=\frac{y}{8}=\frac{z}{27}\)
\(\Rightarrow\hept{\begin{cases}y=8x\\z=27x\end{cases}}\)Thay vào ta được:
\(2x^2+2\left(8x\right)^2-\left(27x\right)^2=1\)
\(\Leftrightarrow-559x^2=1\)
\(\Leftrightarrow x^2=\frac{-1}{559}\)
\(\Leftrightarrow\)Vô nghiệm.
Phạm Nguyệt Minh Băng làm sai từ dòng 4 trên xuống
Bài giải
\(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)
\(\Rightarrow\text{ }x=\frac{y}{8}=\frac{z}{27}\)\(\Rightarrow\hept{\begin{cases}y=8x\\z=27x\end{cases}}\)
Thay vào đẳng thức ta có :
\(2x^2+2\left(8x\right)^2+\left(27x\right)^2=1\)
\(2x^2+128x^2+729x^2=1\)
\(x^2\left(2+128+729\right)=1\)
\(859x^2=1\)
\(x^2=\frac{1}{859}\)
\(\Rightarrow\text{ }x\in\varnothing\)