\(\widehat{ACB}\)>\(\widehat{xAB}\);...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

Gọi By' là tia đối của tia By.
Gọi I là giao điểm của AC và yy'
By//Ax (gt) nên By'//Ax
Do By'//Ax nên xAC=AIy' ( so le trong)
Ta lại có: AIy=BIC ( đối đỉnh)
Do yBC là góc ngoài tại đỉnh B của tam giác BCI nên:
yBC=BIC+ACB
Mà xAC=AIy'
BIC=AIy'
=> xAC=BIC
Do đó yBC=xAC+ACB (đpcm)

25 tháng 10 2018

Bạn xem có phải hình vẽ thế này ko nhá!

A B C x M N 2 1

a, \(\widehat{NAC}=\widehat{ACB}\Rightarrow\)AN//BC (2 góc so le trong bằng nhau)

\(\Rightarrow\widehat{MAB}=\widehat{ABC}\) (2 góc so le trong)

b, Do NA//BC suy ra NM//BC suy ra

\(\widehat{MAx}=\widehat{ACB}=55^o\) (2 góc đồng vị)

c, DO \(\widehat{MAx}=\widehat{ACB}\) và \(\widehat{MAB}=\widehat{ABC}\)(chứng minh trên)

Mặt khác \(\widehat{ABC}=\widehat{ACB}\left(\widehat{B}=\widehat{C}\right)\)(giả thiết)

suy ra \(\widehat{MAx}=\widehat{MAB}\)suy ra MA là tia phân giác của \(\widehat{BAx}\)

5 tháng 8 2019

bn trang này nha:

botay.com.vn

12 tháng 9 2017

Câu 1

a.

Xét \(\Delta ABC\) có :

\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )

\(\Rightarrow\widehat{BCA}=40^o\) (1)

Ta có Ax là tia đối của AB

suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)

\(\widehat{CAx}=80^o\)

lại có Ay là tia phân giác \(\widehat{CAx}\)

\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)

Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)

mà chúng ở vị trí so le trong

\(\Rightarrow\) Ay//BC

Bài 2

Rảnh làm sau , đến giờ học rồi .

25 tháng 9 2019

Ta có: \(\widehat{xAz}=\widehat{B}\left(gt\right)\)

Mà 2 góc này nằm ở vị trí đồng vị.

=> \(Az\) // \(BC.\)

=> \(\widehat{C}=\widehat{CAz}\) (vì 2 góc so le trong)

\(Az\) là tia phân giác của \(\widehat{xAC}\left(gt\right)\)

=> \(\widehat{CAz}=\widehat{xAz}\)

\(\left\{{}\begin{matrix}\widehat{B}=\widehat{xAz}\left(gt\right)\\\widehat{C}=\widehat{CAz}\left(cmt\right)\end{matrix}\right.\)

=> \(\widehat{B}=\widehat{C}\left(đpcm\right).\)

Chúc bạn học tốt!

25 tháng 9 2019

Tự vẽ hình

Ta có: \(\widehat{xAz} =\widehat{B}\) (gt)xAz^=B^(gt)

Mà 2 góc này nằm ở vị trí đồng vị.

=> AzAz // BC.BC.

=> ˆ\(\widehat{C} =\widehat{CAz}\)
C^=CAz^
(vì 2 góc so le trong)

AzAz là tia phân giác của\(\widehat{xAC}\)( gt)xAC^(gt)

=>\(\widehat{CAz} =\widehat{xAz}\)

{ˆB=ˆxAz(gt)ˆC=ˆCAz(cmt){B^=xAz^(gt)C^=CAz^(cmt)

=> ˆB=ˆC(đpcm).

20 tháng 11 2020

a) Xét tam giác ABC có Góc A + góc B+ góc C = 180 độ ( định í tổng 3 góc trong một tam giác

Suy ra góc C = 40 độ

b) Xét tam giác vuông BHC có góc BAC + góc ABH = 90 độ => góc ABH = 50 độ

Xét tam giác vuông HBC có góc BCA+ góc CBH = 90 độ=> góc CAH = 50 độ

Vì góc ABH = góc CAH

nên BH là phân giác của góc ABH)

c) vì Ax song song với BH

Cy song song với BH

nên Ax vuông góc với AC, Cy vuông góc với AC

Ta có góc BCy = góc BCA + góc ACy= 40 độ + 90 độ = 130 độ

Góc xAB + góc ABC + góc BCy = 90 độ + 60 độ + 130 độ = 280 độ

20 tháng 11 2020

hình như sai rồi