Cho 3 số dương \(0\le a\le b\le c\le1\)
Chứng minh:
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3-4x\left(25-2x\right)=8x^2+x-300.\)
\(3-100x+8x^2=8x^2+x-300\)
\(3-100x=x-300\)
\(3+300=x+100x\)
\(303=101x\)
\(x=3\)
Vậy x cần tìm bằng 3
3-4x(25-2x)=8x^2 + x -300
<=> 3-100x+8x^2=8x^2 + x -300
<=>3-100x=x-300
<=>101x=303
<=>x=3
\(M=\frac{a^2-2a+2008}{a^2}\)
\(M=\frac{a^2}{a^2}-\frac{2a}{a^2}+\frac{2008}{a^2}\)
\(M=1-\frac{2}{a}+\frac{2008}{a^2}\)
\(M=1-2\cdot\frac{1}{a}+2008\cdot\left(\frac{1}{a}\right)^2\)
Đặt \(\frac{1}{a}=x\)
Ta có :
\(M=1-2x+2008x^2\)
\(M=2008\left(x^2-x\cdot\frac{1}{1004}+\frac{1}{2008}\right)\)
\(M=2008\left(x^2-2\cdot x\cdot\frac{1}{2008}+\frac{1}{2008^2}+\frac{2007}{2008^2}\right)\)
\(M=2008\left[\left(x-\frac{1}{2008}\right)^2+\frac{2007}{2008^2}\right]\)
\(M=2018\left(x-\frac{1}{2008}\right)^2+\frac{2007}{2008}\ge\frac{2007}{2008}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2008}\)