Tìm hệ số a,b,c biết:
a) (2x-5).(3x+b)=\(ax^2\)+bx+c
b) (ax+b).(\(x^2\)-x-1)=\(ax^3\)+\(cx^2\)-1
c) ax.(x-4)-b.(x+6)+5=\(2x^2\)+5x.(a-b)-6x+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Góp ý:
Bạn không nên gọi các bạn trên OLM là đứa vì như vậy chứng tỏ bạn là một người không văn minh lịch sự. Bạn chú ý lần sau không gọi như vậy nữa ạ!
\(5^{20}:\left(5^{15}\cdot6+5^{15}\cdot19\right)\\ =5^{20}:\left[5^{15}\cdot\left(6+19\right)\right]\\ =5^{20}:\left(5^{15}\cdot25\right)\\ =5^{20}:5^{17}\\ =5^3\\ =125\)
____________________
\(7^{18}:7^{16}+2^2\cdot3^3\\ =7^{18-16}+4\cdot27\\ =7^2+108\\ =49+108\\ =157\)
__________________
\(59\cdot73-30^2+27\cdot59\\ =59\cdot\left(73+27\right)-30^2\\ =59\cdot100-30^2\\ =5900-900\\ =5000\)
\(151-2^{91}:2^{88}+1^2\cdot3\\ =151-2^{91-88}+3\\ =154-2^3\\ =154-8\\ =146\)
_______________
\(2^{38}:2^{36}+5^1\cdot3^2-7^2\\ =2^{38-36}+5\cdot9-49\\ =2^2+45-49\\ =4-4\\ =0\)
_____________
\(7^{91}:7^{89}+5\cdot5^2-124\\ =7^{91-89}+5^3-124\\ =7^2+125-124\\ =49+1\\ =50\)
______________
\(4\cdot15+28:7-6^{20}:6^{18}\\ =60+4-6^{20-18}\\ =64-6^2\\ =64-36\\ =28\)
______________
\(\left(3^2+2^3\cdot5\right):7\\ =\left(9+8\cdot5\right):7\\ =\left(9+40\right):7\\ =49:7\\ =7\)
_______________
\(11^{25}:11^{23}-3^5:\left(1^{10}+2^3\right)-60\\ =11^{25-23}-3^5:\left(1+8\right)-60\\ =11^2-3^5:9-60\\ =121-3^5:3^2-60\\ =61-3^3\\ 61-27\\ =34\)
\(a)71-\left(33+x\right)=26\\ 33+x=71-26=45\\ x=45-33\\ x=12\\ b)97-\left(64-x\right)=44\\ 64-x=97-44\\ 64-x=53\\ x=64-53\\ x=11\\ c)x-36:18=12\\ x-2=12\\ x=2+12\\ x=14\\ d)3636:\left(12\cdot x-91\right)=36\\ 12\cdot x-91=3636:36\\ 12\cdot x-91=101\\ 12\cdot x=101+91\\ 12\cdot x=192\\ x=\dfrac{192}{12}\\ x=16\\ e)\left(x:23+45\right)\cdot67=8911\\ x:23+45=8911:67\\ x:23+45=133\\ x:23=133-45=88\\ x=88\cdot23\\ x=2024\)
Con coi châu Phi nặng 6 125 kg
Con hươu cao cổ nặng 1 687 kg
Con tê giác trắng nặng 2 287 kg
\(x^2\) + 6\(x\) + 9 = 25
\(x^2\) + 6\(x\) + 9 - 25 = 0
\(x^2\) + 6\(x\) + (9 - 25) = 0
\(x^2\) + 6\(x\) - 16 = 0
\(x^2\) - 2\(x\) + 8\(x\) - 16 = 0
(\(x^2\) - 2\(x\)) + (8\(x\) - 16) = 0
\(x\)(\(x\) - 2) + 8(\(x-2\)) = 0
(\(x\) - 2)(\(x\) + 8) = 0
\(\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
Vậy \(x\) \(\in\) {2; - 8}
b; \(\dfrac{242}{363}\) + \(\dfrac{160}{210}\) = \(\dfrac{2}{7}\) x \(x\)
\(\dfrac{2}{3}\) + \(\dfrac{16}{21}\) = \(\dfrac{2}{7}\) x \(x\)
\(\dfrac{14}{21}\) + \(\dfrac{16}{21}\) = \(\dfrac{2}{7}\) x \(x\)
\(\dfrac{30}{21}\) = \(\dfrac{2}{7}\) x \(x\)
\(\dfrac{10}{7}\) = \(\dfrac{2}{7}\) x \(x\)
\(x\) = \(\dfrac{10}{7}\) : \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{10}{7}\) x \(\dfrac{7}{2}\)
\(x\) = 5
\(\dfrac{242}{363}+\dfrac{160}{210}=\dfrac{2}{7}\times x\\ \dfrac{2}{3}+\dfrac{16}{21}=\dfrac{2}{7}\times x\\ \dfrac{2}{7}\times x=\dfrac{14}{21}+\dfrac{16}{21}\\ \dfrac{2}{7}\times x=\dfrac{20}{21}\\ x=\dfrac{20}{21}:\dfrac{2}{7}\\ x=\dfrac{10}{3}\)
a) \(\left(2x-5\right)\left(3x+b\right)=ax^2+bx+c\)
\(\Rightarrow6x^2+2bx-15x-5b=ax^2+bx+c\)
\(\Rightarrow6x^2+\left(2b-15\right)x-5b=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}a=6\\2b-15=b\\-5b=c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=6\\b=15\\c=-75\end{matrix}\right.\)
b) \(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)
\(\Rightarrow ax^3-ax^2-ax+bx^2-bx-b=ax^3+cx^2-1\)
\(\Rightarrow ax^3-ax^2+bx^2-ax-bx-b=ax^3+cx^2-1\)
\(\Rightarrow ax^3+\left(b-a\right)x^2-\left(a+b\right)x-b=ax^3+cx^2-1\)
\(\Rightarrow\left\{{}\begin{matrix}b-a=c\\-\left(a+b\right)=0\\-b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b-a=c\\a=-b\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=1\\c=2\end{matrix}\right.\)
c) \(ax\left(x-4\right)-b\left(x+6\right)+5=2x^2+5x\left(a-b\right)-6x+c\)
\(\Rightarrow ax^2-4ax-bx-6b+5=2x^2+\left(5a-5b\right)x-6x+c\)
\(\Rightarrow ax^2-\left(4a+b\right)x-\left(5a-5b\right)x-6b+5=2x^2-6x+c\)
\(\Rightarrow ax^2-\left(4a+b+5a-5b\right)x-6b+5=2x^2-6x+c\)
\(\Rightarrow ax^2-\left(9a-4b\right)x-6b+5=2x^2-6x+c\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\-\left(9a-4b\right)=-6\\-6b+5=c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{9a-6}{4}\\c=-6b+5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=-13\end{matrix}\right.\)