Cho hai biểu thức:
A = \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\) và B = \(\dfrac{7\sqrt{x}-6}{x-4}+\dfrac{\sqrt{x}-3}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\) (với \(x\ge0;x\ne4\))
c) Biểu thức B sau khi thu gọn được B = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\). Cho biểu thức P = A.B. Tìm x để \(\left|P\right|-P=0\)
\(P=A.B=\dfrac{\sqrt{x}}{\sqrt{x}+1}.\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Ta có : \(\left|P\right|-P=0\) \(\Leftrightarrow\left|P\right|=P\Leftrightarrow\left|\dfrac{\sqrt{x}}{\sqrt{x}-2}\right|=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
\(+TH_1:x\ge0\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\) (luôn đúng)
\(+TH_2:x< 0\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
\(\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}=0\)
\(\Leftrightarrow-2.\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)=0\)
\(\Leftrightarrow x=0\)