K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2023

Hình bạn tự vẽ nha .

Xét : \(\Delta ABC\) đều có đường cao là AH.

\(\Rightarrow AH\) cũng là đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow HC=\dfrac{1}{2}BC=\dfrac{1}{2}a\)

Xét \(\Delta AHC\) vuông tại H :

\(\Rightarrow AH^2=AC^2-HC^2\)

\(\Rightarrow AH^2=a^2-\dfrac{1}{4}a^2=\dfrac{3}{4}a^2\)

\(\Rightarrow AH=a\sqrt{\dfrac{3}{4}}\)

24 tháng 7 2023

Tam giác đều ABC \(\Rightarrow A=B=C=60^o\)

⇒ Δ ABH là Δ nửa đều

\(\Rightarrow HB=\dfrac{a}{2}\Rightarrow AH=\dfrac{a\sqrt[]{3}}{2}\)

24 tháng 7 2023

\(\dfrac{HB}{HC}=\dfrac{2}{5}\Rightarrow\dfrac{HB}{2}=\dfrac{HC}{5}=\dfrac{HB.HC}{2.5}=\dfrac{AH^2}{10}=\dfrac{256}{10}=\dfrac{128}{5}\)

\(\Rightarrow HB=\dfrac{128}{5}.2=\dfrac{256}{5}\left(cm\right);HC=\dfrac{128}{5}.5=128\left(cm\right)\)

\(\Rightarrow BC=HB+HC=\dfrac{256}{5}+128=\dfrac{896}{5}\left(cm\right)\)

\(AC^2=AH^2+HC^2=256+\left(\dfrac{256}{2}\right)^2=256\left(1+\dfrac{256}{4}\right)\Rightarrow AC=16\sqrt[]{1+\dfrac{256}{4}}=16\sqrt[]{\dfrac{260}{4}}=16.\dfrac{1}{2}.2\sqrt[]{65}=16\sqrt[]{65}\left(cm\right)\)

\(AB^2=AH^2+BH^2=256+\left(\dfrac{256}{5}\right)^2=256\left(1+\dfrac{256}{25}\right)\Rightarrow AB=16\sqrt[]{1+\dfrac{256}{25}}=\dfrac{16}{5}\sqrt[]{281}\left(cm\right)\)

Chu vi tam giác ABC là : \(AB+AC+BC\)

\(=\dfrac{16}{5}\sqrt[]{281}+16\sqrt[]{65}+\dfrac{896}{5}\)

\(=16\left(\dfrac{1}{5}\sqrt[]{281}+\sqrt[]{65}+\dfrac{56}{5}\right)\)

\(=16\left(\sqrt[]{65}+\dfrac{56+\sqrt[]{281}}{5}\right)\left(cm\right)\)

24 tháng 7 2023

\(\sqrt{x+1}=3x+7\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow x+1=\left(3x+7\right)^2\)

\(\Leftrightarrow x+1=9x^2+42x+49\)

\(\Leftrightarrow x+1-9x^2-42x-49=0\)

\(\Leftrightarrow-9x^2-41x-48=0\)

Ta có: \(\Delta=\left(-41\right)^2-4\cdot-9\cdot-48=-48< 0\)

Vậy Pt vô nghiệm

24 tháng 7 2023

\(\sqrt[]{x+1}=3x-7\Leftrightarrow\left\{{}\begin{matrix}3x-7\ge0\\x+1=\left(3x-7\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{3}\\x+1=9x^2-42x+49\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{3}\\9x^2-43x+48=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\Delta=1849-1728=121\Rightarrow\sqrt[]{\Delta}=11\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{43+11}{2.9}=3\\x_2=\dfrac{43-11}{2.9}=\dfrac{32}{18}=\dfrac{16}{9}\end{matrix}\right.\)

so với điều kiện \(x\ge\dfrac{7}{3}\)

\(\Rightarrow x=3\)

24 tháng 7 2023

A B C H E F I M K

1/

Xét tg vuông ABH có

\(AH^2=AE.AB\)  (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông ACH có

\(AH^2=AF.AC\)  (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow AE.AB=AF.AC\) (cùng bằng \(AH^2\) )

2/

\(HE\perp AB\) (gt)

\(AC\perp AB\) (gt) \(\Rightarrow AF\perp AB\)

=> AF//HE (cùng vuông góc với AB) (1)

Ta có

\(HF\perp AC\) (gt)

\(AB\perp AC\) (gt) \(\Rightarrow AE\perp AC\)

=> AE//HF (cùng vuông góc với AC) (2)

Từ (1) và (2) => AEHF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hình bình hành )

=> AE = HF

Xét tg vuông AHC có

\(HF^2=AF.FC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AE^2=AF.FC\)

3/

E; F cùng nhìn AH dưới góc \(90^o\)

=> AEHF là tứ giác nội tiếp

\(\Rightarrow\widehat{BAH}=\widehat{EFH}\) (góc nội tiếp cùng chắn cung EH) (1)

\(\widehat{AEF}=\widehat{EFH}\) (góc so le trong) (2)

\(\widehat{AEF}=\widehat{IEB}\) (góc đối đỉnh) (3)

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) (4)

Xét tg IBE và tg IFC có

Từ (1) (2) (3) (4) \(\Rightarrow\widehat{IEB}=\widehat{ACB}\)

\(\widehat{EIB}\) chung

=> tg IBE đồng dạng với tg IFC (g.g.g)

\(\Rightarrow\dfrac{IE}{IC}=\dfrac{IB}{IF}\Rightarrow IE.IF=IB.IC\)

4/

Ta có

\(\widehat{BAK}+\widehat{BAM}=\widehat{MAK}=90^o\)

\(\widehat{CAM}+\widehat{BAM}=\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{BAK}=\widehat{CAM}\)

Mà \(AM=\dfrac{BC}{2}=MB=MC\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

=> tg AMC cân tại M \(\Rightarrow\widehat{CAM}=\widehat{ACM}\)

\(\Rightarrow\widehat{ACM}=\widehat{BAK}\)

Xét tg ABK và tg ACK có

\(\widehat{AKC}\) chung

\(\widehat{BAK}=\widehat{ACM}\) (cmt)

=> tg ABK đồng dạng với tg ACK (g.g.g)

\(\Rightarrow\dfrac{KB}{AK}=\dfrac{AK}{KC}\Rightarrow AK^2=KB.KC\)

Xét tg vuông AKM có

\(AK^2=KH.KM\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow KH.KM=KB.KC\)

 

 

 

 

 

 

 

23 tháng 7 2023

\(\sqrt[]{5-x^6}+\sqrt[]{3x^4-2}=1\left(1\right)\)

Điều kiện \(\left\{{}\begin{matrix}5-x^6\ge0\\3x^4-2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^6\le5\\x^4\ge\dfrac{2}{3}\end{matrix}\right.\)  \(\) \(\Rightarrow\left\{{}\begin{matrix}-\sqrt[6]{5}\le x\le\sqrt[6]{5}\\\left[{}\begin{matrix}x\le-\sqrt[4]{\dfrac{2}{3}}\\x\ge\sqrt[4]{\dfrac{2}{3}}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-\sqrt[6]{5}\le x\le-\sqrt[4]{\dfrac{2}{3}}\\\sqrt[4]{\dfrac{2}{3}}\le x\le\sqrt[6]{5}\end{matrix}\right.\) \(\left(2\right)\)

\(\Rightarrow\left(1\right)\) thỏa \(\Leftrightarrow\left\{{}\begin{matrix}5-x^6\le1\\3x^4-2\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^6\le4\\x^4\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\sqrt[3]{2}\\0\le x\le1\end{matrix}\right.\) \(\Leftrightarrow0\le x\le1\left(3\right)\)

\(\left(2\right),\left(3\right)\Rightarrow\sqrt[4]{\dfrac{2}{3}}\le x\le1\) \(\Rightarrow\sqrt[4]{\dfrac{2}{3}}< x< 1\)

23 tháng 7 2023

thanks