K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Xét ΔABO vuông tại B và ΔACO vuông tại C có

AO chung

AB=AC

Do đó: ΔABO=ΔACO

=>OB=OC

=>O nằm trên đường trung trực của BC(1)

ta có: AB=AC

=>A nằm trên đường trung trực của BC(2)

Ta có: MB=MC

=>M nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,M,O thẳng hàng

28 tháng 5

Hình đâu bạn nhỉ?

28 tháng 5

cần chi hình

22 tháng 5

40 lon à

22 tháng 5

30:3 = 10 lon nha e

22 tháng 5

 Đây là toán nâng cao của nâng cao chuyên đề dãy số cách đều, cấu trúc          

          Giải: 

Cứ 3 lon bia đổi được 1 lon bia nên số lon bia mất đi sau mỗi lần đổi là:

        3 - 1  = 2 (lon bia)

Sau lần đổi thứ nhất số lon bia còn lại là:  30 - 2 = 28 (lon)

Sau lần đổi cuối cùng số lon bia còn lại là 2 lon (vì 2 < 3 nên không thể đổi được nữa)

Số lần đổi vỏ lon bia là: (28 - 2) : 2  + 1  = 14 (lần)

Vậy tổng số lon bia mà ngườ đó có thể uống được khi mua 30 lon bia và được tặng là:

     3 x 14 + 2  = 44 (lon bia)

Đáp số: 44 lon bia

   

 

 

a: ĐKXĐ: x<>1

Để E là số nguyên thì \(3-x⋮x-1\)

=>\(x-3⋮x-1\)

=>\(x-1-2⋮x-1\)

=>\(-2⋮x-1\)

=>\(x-1\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{2;0;3;-1\right\}\)

b: \(E=\dfrac{3-x}{x-1}=\dfrac{-\left(x-3\right)}{x-1}=\dfrac{-\left(x-1-2\right)}{x-1}=-1+\dfrac{2}{x-1}\)

Để E min thì x-1=-1

=>x=0

Trên tia đối của tia NB, lấy E sao cho NB=NE

Xét ΔNBC và ΔNEA có

NB=NE

\(\widehat{BNC}=\widehat{ENA}\)(hai góc đối đỉnh)

NC=NA

Do đó: ΔNBC=ΔNEA

=>EC=EA

Xét ΔCBE có CB+CE>EB

mà CE=BA và EB=2BN

nên CB+BA>2BN

18 tháng 5

- 1,25 = \(\dfrac{-125}{100}\) = \(\dfrac{-125:25}{100:25}\) = \(\dfrac{-5}{4}\)

1: \(\left(x-\dfrac{1}{2}\right)^2>=0\forall x\)

=>\(A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)

=>\(x=\dfrac{1}{2}\)

2: \(\left|3x-1\right|>=0\forall x\)

=>\(\left|3x-1\right|-5>=-5\forall x\)

Dấu '=' xảy ra khi 3x-1=0

=>3x=1

=>\(x=\dfrac{1}{3}\)

3: \(\left(2-x\right)^2>=0\forall x\)

=>\(-\left(2-x\right)^2< =0\forall x\)

=>\(C=-\left(2-x\right)^2+5< =5\forall x\)

Dấu '=' xảy ra khi 2-x=0

=>x=2

4: \(\left(x^2-4\right)^2>=0\forall x\)

\(\left|y-x\right|>=0\forall x,y\)

Do đó: \(\left(x^2-4\right)^2+\left|y-x\right|>=0\forall x,y\)

=>\(D=\left(x^2-4\right)^2+\left|y-x\right|+3>=3\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x^2-4=0\\y-x=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y=x\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}y=x=2\\y=x=-2\end{matrix}\right.\)

5: \(\left(x-1\right)^2>=0\forall x\)

\(\left(x^2-1\right)^4>=0\forall x\)

Do đó: \(E=\left(x-1\right)^2+\left(x^2-1\right)^4>=0\forall x\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\x^2-1=0\end{matrix}\right.\)

=>x=1

6: \(\left(x+3\right)^2+3>=3\forall x\)

=>\(F=\dfrac{2}{\left(x+3\right)^2+3}< =\dfrac{2}{3}\forall x\)

Dấu '=' xảy ra khi x+3=0

=>x=-3

7: \(\left(x^2+1\right)^2>=1^2=1\forall x\)

=>\(\left(x^2+1\right)^2+2022>=2023\forall x\)

=>\(G=\dfrac{2023}{\left(x^2+1\right)^2+2022}< =\dfrac{2023}{2023}=1\forall x\)

Dấu '=' xảy ra khi x=0

17 tháng 5

Bạn chia từng bài ra ý nhỏ để dễ làm hơn ạ.

AH
Akai Haruma
Giáo viên
18 tháng 5

Lời giải:

$P(1)=1^{2024}+1^{2023}+....+1+1P(1)$

$=\underbrace{1+1+...+1}_{2024}+P(1)=2024+P(1)$

$\Rightarrow 2024=0$ (vô lý)

Vậy không tồn tại $P(x)$ thỏa mãn đề. 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giáccủa góc BAC

b: Ta có: \(\widehat{DHA}=\widehat{HAC}\)(DH//AC)

\(\widehat{DAH}=\widehat{HAC}\)(AH là phân giác của góc BAC)

Do đó: \(\widehat{DHA}=\widehat{DAH}\)

=>ΔDAH cân tại D

c: Ta có: \(\widehat{DAH}+\widehat{DBH}=90^0\)(ΔAHB vuông tại H)

\(\widehat{DHA}+\widehat{DHB}=\widehat{AHB}=90^0\)

mà \(\widehat{DAH}=\widehat{DHA}\)

nên \(\widehat{DBH}=\widehat{DHB}\)

=>DB=DH

=>DB=DA

=>D là trung điểm của AB

ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

Xét ΔABC có

AH,CD là các đường trung tuyến

AH cắt CD tại G

Do đó: G là trọng tâm của ΔABC