K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

\(\dfrac{a}{b}-\dfrac{a+2009}{b+2009}=\dfrac{a\left(b+2009\right)-b\left(a+2009\right)}{b\left(b+2009\right)}\)

\(=\dfrac{2009a-2009b}{b\left(b+2009\right)}=\dfrac{2009\left(a-b\right)}{b\left(b+2009\right)}\)

Vì a>b>0 nên a-b>0; b>0; b+2009>0

=>\(\dfrac{2009\left(a-b\right)}{b\left(b+2009\right)}>0\)

=>\(\dfrac{a}{b}>\dfrac{a+2009}{b+2009}\)

30 tháng 5 2017

Cái câu 1 ý , chỗ a,d-bc=2009 có ý j ?

Câu 2 : sao cho  ? 

=> đề ko rõ ràng , bạn sửa lại đi , người ta nhìn vào đọc ko hiểu đề => ko làm được

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

\(\Leftrightarrow ab-ad+cb-cd=ab+ad-cb-cd\)

=>-2ad=-2cb

=>ad=cb

=>a/b=c/d

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}=\dfrac{b^{2009}k^{2009}-d^{2009}k^{2009}}{b^{2009}-d^{2009}}=k^{2009}\)

\(\left(\dfrac{a}{b}\right)^{2009}=\left(\dfrac{bk}{b}\right)^{2009}=k^{2009}\)

Do đó: \(\dfrac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}=\left(\dfrac{a}{b}\right)^{2009}\)

NV
6 tháng 10 2021

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)

\(\Rightarrow\dfrac{b}{a-b}=\dfrac{d}{c-d}\Rightarrow\dfrac{2b}{a-b}=\dfrac{2d}{c-d}\)

\(\Rightarrow\dfrac{2b}{a-b}+1=\dfrac{2d}{c-d}+1\)

\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) (đpcm)

15 tháng 9 2018

mấy cái đó từ công thức mà ra

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

b: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)

1 tháng 1 2018

Tên của mày là Tôm

1 tháng 1 2018

bài này cũng khó đấy!

2 tháng 6 2021

`a)a/b<c/d`
Nhân 2 vế cho `bd>0` ta có:
`(abd)/b<(bcd)/d`
`<=>ad<bc`
`b)ad<bc`
Chia 2 vế cho `bd>0` ta có:
`(ad)/(bd)<(bc)/(bd)`
`<=>a/b<c/d`.

2 tháng 6 2021

Thank>3