Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, <=> 2,5 : 4x = 2,5
<=> 4x = 2,5 : 2,5 = 1
<=> x=1 : 4 = 1/4
b, <=> 1/5.x:3 = 8/3
<=> 1/5.x = 8/3 . 3 = 8
<=> x = 8 : 1/5 = 40
\(-2xy^2\left(\frac{1}{4}x^3y^4\right)=-\frac{1}{2}xy^2x^3y^4=-\frac{1}{2}x^4y^6\)
Hệ số : -1/2
Biến : x^4y^6
Bậc : 10
a. Giá trị nhỏ nhất của A=\(\sqrt{2}+\frac{3}{11}\)
không có giá trị lớn nhất
b. Giá trị lớn nhất của B là \(\frac{5}{7}\) khi x=5 không có GTLN
c)3(2x-1)-5(x-3)+6(3x-4)=24
<=>6x-3-5x-15+18x-24=24
<=>19x-12=24
<=>19x=36
<=>x=\(\frac{36}{19}\)
d)2x(5-3x)+2x(3x-5)-3(x-7)=3
<=>10x-6x2+6x2-10x-3x-21=3
<=>-3(x-7)=3
<=>21-3x=3
<=>-3x=-18
<=>x=6
lên mạng xem iknguyen pham lan
Bn thi Văn zà Anh chưa? Mk thi lúc chiều rùi...
\(M=\left(5x-3y+3xy+x^2y^2\right)-\left(\dfrac{1}{2}x+2xy-y+4x^2y^2\right)\)
\(=5x-3y+3xy+x^2y^2-\dfrac{1}{2}x-2xy+y-4x^2y^2\)
\(=\left(5x-\dfrac{1}{2}x\right)+\left(y-3y\right)+\left(3xy-2xy\right)+\left(x^2y^2-4x^2y^2\right)\) \(=4,5x-2y+xy-3x^2y^2\)
Thay \(x=1;y=-\dfrac{1}{2}\) vào ta có:
\(4,5x-2y+xy-3x^2y^2\)
\(=4,5.1-2.\left(-\dfrac{1}{2}\right)+1.\left(-\dfrac{1}{2}\right)-3.1^2.\left(-\dfrac{1}{2}\right)^2\)
\(=4,5+1-\dfrac{1}{2}-\dfrac{3}{4}\) \(=\dfrac{17}{4}\)
e)(3x-1)(2x+7)-(x+1)(6x-5)=16
=>\(6x^2-2x+21x-7-6x^2-6x+5x+5\)=16
=>18x-2=16
=> 18x=18
=> x=1
\(\left|x+\frac{4}{15}\right|-\left|-3.75\right|=-\left|-2,15\right|\)
\(\Rightarrow\left|x+\frac{4}{15}\right|-\frac{15}{4}=-\frac{43}{20}\)
\(\Rightarrow\left|x+\frac{4}{15}\right|=-\frac{43}{20}+\frac{15}{4}\)
\(\Rightarrow\left|x+\frac{4}{15}\right|=\frac{8}{5}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{4}{15}=\frac{8}{5}\\x+\frac{4}{15}=-\frac{8}{5}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{28}{15}\end{cases}}\)
\(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
\(\left|x+\frac{4}{15}\right|-3,75=-2,15\)
\(\left|x+\frac{4}{15}\right|=1,6\)
=> \(x+\frac{4}{15}=1,6\) hoặc \(x+\frac{4}{15}=-1,6\)
=> \(x=\frac{4}{3}\) hoặc \(x=\frac{-28}{15}\)
Vậy..
e) \(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy: ...
f) \(\left(x+4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Vậy: ...
g) \(\left(x-2\right)\left(x+3\right)< 0\)
TH1: \(\left\{{}\begin{matrix}x-2>0\\x+3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\)
\(\Rightarrow x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-2< 0\\x+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x>-3\end{matrix}\right.\)
\(\Rightarrow-3< x< 2\)
Vậy: ...
h) \(\left(x-1\right)\left(x+2\right)>0\)
TH1: \(\left\{{}\begin{matrix}x-1>0\\x+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>-2\end{matrix}\right.\)
\(\Rightarrow x>1\)
TH2: \(\left\{{}\begin{matrix}x-1< 0\\x+2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x< -2\end{matrix}\right.\)
\(\Rightarrow x< -2\)
Vậy: ...
a) \(3\left(2x+7\right)-2x=9\Leftrightarrow6x+21-2x=9\)
\(\Leftrightarrow4x+21=9\)
\(\Leftrightarrow4x=9-21=-12\)
\(\Leftrightarrow x=\dfrac{-12}{4}=-3\)
Vậy: ...
b) \(\left[\left(7x-4\right):2-2\right]\cdot13=221\)
\(\Leftrightarrow\left(7x-4\right):2-2=\dfrac{221}{13}=17\)
\(\Leftrightarrow\left(7x-4\right):2=17+2\)
\(\Leftrightarrow\left(7x-4\right):2=19\)
\(\Leftrightarrow7x-4=19\cdot2=38\)
\(\Leftrightarrow7x=42\)
\(\Leftrightarrow x=\dfrac{42}{7}=6\)
Vậy: ...
c) \(x^2-9=0\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm\sqrt{9}\)
\(\Leftrightarrow x=\pm3\)
Vậy: ....
d) \(5< x^2< 16\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2>5\\x^2< 16\end{matrix}\right.\)
Với \(x^2>5\Rightarrow\left[{}\begin{matrix}x< -\sqrt{5}\\x>\sqrt{5}\end{matrix}\right.\) (1)
Với \(x^2< 16\Rightarrow-4< x< 4\) (2)
Từ (1) và (2) \(\left[{}\begin{matrix}-4< x< -\sqrt{5}\\\sqrt{5}< x< 4\end{matrix}\right.\)