Cho\(\Delta ABC\)có phân giác ngoài góc C cắt phân giác trong góc B tại M . Tính\(\widehat{BAM}\)theo\(\widehat{BAC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: \(x\le-\frac{1}{2}\)
pt <=> \(\left[-\left(x-1\right)\right]-\left[-\left(2x+1\right)\right]=13\)<=>1-x+2x+1=13 <=> 2+x=13 <=> x=11 (loại)
TH2: \(-\frac{1}{2}< x\le1\)
pt <=> \(\left[-\left(x-1\right)\right]-\left(2x+1\right)=13\) <=> 1-x-2x-1=13 <=> -3x=13 <=> x=-13/3 (loại)
TH3: x > 1
pt <=> (x-1)-(2x+1)=13 <=> x-1-2x-1=13 <=> -x-2=13 <=> x=-15 (loại)
Vậy pt vô nghiệm
Trên nửa mặt phẳng chứa điểm C có bờ là AB vẽ tam giác AFB đều, AF cắt BD tại E
Tam giác ABC vuông cân tại A <=> AB=AC (1)
Tam giác AFB đều <=> AF=AB=BF (2)
Từ (1) và (2) => AF=AC
Góc ADC+góc DAC+góc ACD=180o (tổng 3 góc trong tam giác) <=> 150o+góc DAC+góc ACD=180o
<=>góc DAC+góc ACD=30o mà tam giác ADC cân tại D nên góc DAC=góc ACD <=> góc DAC+góc ACD=15o(3)
Tam giác AFB đều nên góc BAF=góc ABF=góc AFB=60o
Góc ABC=góc BAF+góc FAD+góc DAC=60o+góc FAD+15o=90o <=> góc FAD=15o (4)
Từ (3) và (4) => góc FAD=góc DAC
\(\Delta FAD=\Delta CAD\left(c.g.c\right)\) do có: AF=AC (cmt); góc FAD=góc DAC (cmt); AD chung
=>DF=DC (2 cạnh tương ứng). Mặt khác tam giác ADC cân tại D <=> AD=DC
=>AD=DF
Ta có: AB=BF và AD=DF => BD là đường trung trực của AF => góc AED=90o
Góc EAD+góc AED+góc ADE=180o(tổng 3 góc trong tam giác) <=> 15o+90o+góc ADE=180o<=>góc ADE=75o
hay góc ADB=75o
Trên nửa mặt phẳng chứa điểm C có bờ là AB vẽ tam giác AFB đều , AF cắt BD tại E .
Tam giác ABC vuông cân tại A <=> AB = AC ( 1 )
Tam giác AFB đều <=> AF = AB = BF ( 2 )
Từ ( 1 ) và ( 2 ) => AF = AC
Góc ADC + góc DAC + góc ACD = 180o ( tổng 3 góc trong tam giác <=> 150o + góc DAC + góc ACD = 180o
<=> Góc DAC + góc ACD = 30o mà tam giác ADC cân tại D nên góc DAC = góc ACD <=> góc DAC + góc ACD = 15o ( 3 )
Tam giác AFB đều nên góc BAF = góc ABF = góc AFB = 60o
Góc ABC = góc BAF + góc FAD + góc DAC = 60o + góc FAD + 15o = 90o <=> góc FAD = 15o ( 4 )
Từ ( 3 ) và ( 4 ) => góc FAD = góc DAC
Tam giác FAD = tam giác CAD do đó : AF=AC ; góc FAD = góc DAC ; AD chung
=> DF = DC ( 2 cạnh tương ứng ) . Mặt khác tam giác ADC cân tại D <=> AD = DC
=> AD = DF
Ta có : AB = BF và AD = DF => BD là đường trung trực của AF => góc AED = 90o
Góc EAD + góc AED + góc ADE = 180o ( tổng 3 góc trong tam giác ) <=> 15o + 90 o + góc ADE = 180 o <=> góc ADE = 75o hay ADB = 75o
Bài này thì cần gì cho M,N...
Bạn tự xử cái hình nha :>
Ta có: \(\Delta DEF\)cân tại \(D\Rightarrow DH\)vừa là đường cao vừa là trung tuyến
\(\Rightarrow EH=HF=\frac{EF}{2}=\frac{8}{2}=4\left(cm\right)\)
Tới đây bạn xét pytago cho \(\Delta DEH\)là được nhé!