Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a. https://olm.vn/hoi-dap/detail/100987610050.html
b. Giống nhau hoàn toàn => P=Q
Chỉ biết thế thôi
a)
Hai số lẻ liên tiếp có dạng 2n + 1 và 2n + 3 (n N).
Gọi d là ước số chung của chúng. Ta có: 2n + 1d và 3n + 3 d
nên (2n + 3) - (2n + 1) d hay 2d
nhưng d không thể bằng 2 vì d là ước chung của 2 số lẻ.
Vậy d = 1 tức là hai số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau.
b)
Ta có: 5 = 2 + 3; 9 = 4 + 5; 13 = 6 + 7; 16 =7 + 8 ...
Do vậy x = a + (a+1) (a N)
nen 1+5+9+13+16+...+ x=1+2+3+4+5+6+7+...+a+(a+1)=501501
hay (a+1)9a+1+10:2=501501
(a+1)(a+2)-1003002-1001.1002
suy ra :a=1000
do đó :x=1000+(1000+1)=2001
\(1+\frac{1}{3}+\frac{1}{6}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\frac{2}{6}+\frac{2}{12}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\left[2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)\right]=4\)
\(\Leftrightarrow1+2\left(\frac{1}{2}-\frac{1}{\left(x+1\right)}\right)=4\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{4-1}{2}=\frac{3}{2}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{2}-\frac{3}{2}=-1\)
\(\Leftrightarrow x=-1+1=-2\)
Vậy x = -2
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{2.6}+\frac{2}{2.10}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)
\(\Leftrightarrow2\left(1-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)
\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=1\frac{1991}{1993}\div2\)
\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=\frac{1992}{1993}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=1-\frac{1992}{1993}=\frac{1}{1993}\)
\(\Leftrightarrow x+1=1993\)
\(\Leftrightarrow x=1992\)
Để a+b nhỏ nhất thì a,b nhỏ nhất
Do \(a-b\ne0\) nên \(a\ne b\), \(ab\ne\frac{a}{b}\) nên \(b\ne1\)\(\Rightarrow\)\(a\ne1\), \(a-b>0\)\(\Rightarrow\)\(a>b\)
\(\frac{a}{b}\inℕ^∗\)\(\Rightarrow\)\(a⋮b\)
Từ những điều kiện trên => a nhỏ nhất khi a=2b
loại a=4 và b=2 vì ko thoả mãn \(a-b\ne\frac{a}{b}\)
=> a,b nhỏ nhất khi a=6 và b=3 => a+b=9 thoả mãn đk
a,5^x=125
=>5^x=5^3
=>x=3
b,3^2x=81
=>3^2x=3^4
=>2x=4
=>x=4:2=2
c,5^2x-3-2*5^2=5^2+3
5^2x-3-50=75
5^2x-3=75+50=125
5^2x-3=5^3
=>2x-3=3
=>2x=3+3=6
=>6:2=3
k cho mk nhé
\(a,125=5\cdot5\cdot5=5^3\Leftrightarrow x=3\)
\(b,81=3\cdot3\cdot3\cdot3=3^4\Leftrightarrow2x=4\Leftrightarrow x=4:2\Leftrightarrow x=2\)
\(c,5^{2x-3}-2\cdot5^2=5^2\cdot3\)
\(\Leftrightarrow5^{2x-3}=2\cdot5^2+5^2\cdot3\)
\(\Leftrightarrow5^{2x-3}=5^2\cdot\left(2+3\right)\)
\(\Leftrightarrow5^{2x-3}=5^2\cdot5\Leftrightarrow5^{2x-3}=5^3\)
\(\Leftrightarrow2x-3=3\Leftrightarrow2x=3+3\Leftrightarrow2x=6\Leftrightarrow x=6:2\Leftrightarrow x=3\)
2.3a + 2.3b = 3a+b
=> 2(3a + 3b) = 3a + b
Vì vế trái luôn là số chẵn.(có chứa ts 2)
Mà vế phải là số lẻ.
=> Ko có a,b thỏa mãn