Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(Q=\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right).\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)
\(\Leftrightarrow Q=\left(\frac{x\left(2-x\right)}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right).\frac{2+x\left(1-x\right)}{x^2}\)
\(\Leftrightarrow Q=\frac{-x\left(x-2\right)^2-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{2+x-x^2}{x^2}\)
\(\Leftrightarrow Q=\frac{x\left(x^2-4x+4\right)-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(\Leftrightarrow Q=\frac{x\left(x^2+4\right)}{2\left(x^2+4\right)}.\frac{x+1}{x^2}\)
\(\Leftrightarrow Q=\frac{x+1}{2x}\)
b) Để \(Q\inℤ\)
\(\Leftrightarrow x+1⋮2x\)
\(\Leftrightarrow2\left(x+1\right)⋮2x\)
\(\Leftrightarrow2x+2⋮2x\)
\(\Leftrightarrow2⋮2x\)
\(\Leftrightarrow2x\inƯ\left(2\right)\)
\(\Leftrightarrow2x\in\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{\pm\frac{1}{2};\pm1\right\}\)
Mà \(x\inℤ\)
Vậy để \(Q\inℤ\Leftrightarrow x\in\left\{1;-1\right\}\)

a) \(Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}\left(ĐK:x\ne-\frac{1}{2}\right)\)
\(=\frac{x+3-x+7}{2x+1}=\frac{10}{2x+1}\)
b) Để Q nguyên \(\Leftrightarrow\frac{10}{2x+1}\in Z\)
=> \(2x+1\inƯ\left(10\right)\)
=> \(2x+1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
Ta có bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 4 | -4 | 10 | -10 |
x | 0 | -1 | \(\frac{1}{2}\) (loại) | \(-\frac{3}{2}\)(loại) | \(\frac{3}{2}\)(loại) | \(-\frac{5}{2}\)(loại) | \(\frac{9}{2}\)(loại) | \(-\frac{11}{2}\)(loại) |
Vậy \(x\in\left\{0;-1\right\}\)
P(\(x)\) = 2\(x^5\) + 4\(x^4\) - 7\(x^3\) - 44 ; Q(\(x)\) = 2\(x^2\) - 7
P(\(x\)) = (2\(x^5\) - 7\(x^3\))+ (4\(x\)\(^4\) - 49) + 5
P(\(x)\) = \(x^3\).(2\(x^2\) - 7) + (2\(x^2-7).\left(2x^2+7\right)\) + 5
⇒ P(\(x)\) ⋮ Q(\(x\)) ⇔ 5 ⋮ (2\(x^2\) - 7) (tính chất chia hết của một tổng)
⇒ (\(2x^2-7)\inƯ\left(5\right)=\left\lbrace-5;-1;1;5\right\rbrace\)
⇒ \(x^2\) ∈ {1; 3; 4; 6}
⇒ \(x\in\left\lbrace-1;\right\rbrace1;-2;2;-\sqrt3;\sqrt3;-\sqrt6;\sqrt6\)\()\)
Vì \(x\in Z\) nên \(x\in\) {-2; -1; 1; 2}
Vậy \(x\in\left\lbrace-2;-1;1;2\right\rbrace\)
Mọi người tick cho cô Hoài đi ạ ! Bài này cô giải đúng rồi đó