Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : \(4x^2=1\)
\(\Rightarrow\orbr{\begin{cases}2x=1\\2x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
mà \(x\ne-\frac{1}{2}\Rightarrow x=\frac{1}{2}\)
Thay \(x=\frac{1}{2}\)vào B , ta được:
\(B=\frac{\left(\frac{1}{2}\right)^2-\frac{1}{2}}{2.\frac{1}{2}+1}=\frac{\frac{1}{4}-\frac{1}{2}}{1+1}=\frac{-\frac{1}{4}}{2}=-\frac{1}{8}\)
Vậy \(B=-\frac{1}{8}\)khi \(4x^2=1\)
b)Ta có : \(A=\frac{1}{x-1}-\frac{x}{1-x^2}\)
\(=\frac{1}{x-1}+\frac{x}{x^2-1}\)
\(=\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow M=A.B=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x^2-x}{2x+1}\)
\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x\left(x-1\right)}{2x+1}\)
\(=\frac{x}{x+1}\)
Vậy \(M=\frac{x}{x+1}\)
c)Ta có: \(x< x+1\forall x\)
\(\Rightarrow M=\frac{x}{x+1}< \frac{x+1}{x+1}=1\forall x\ne-1\)
Vậy với mọi \(x\ne-1\)thì \(M< 1\)
Do : \(4x^2=1\)
\(< =>\orbr{\begin{cases}2x=1\\2x=-1\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
Ta thấy điều kiện xác định của B là \(x\ne-\frac{1}{2}\)
Suy ra \(x=\frac{1}{2}\)
Ta có : \(B=\frac{x^2-x}{2x+1}=\frac{\frac{1}{4}-\frac{1}{2}}{\frac{1}{2}.2+1}=\frac{\frac{-1}{4}}{2}=-\frac{1}{8}\)
Vậy ......
Ta có : \(A=\frac{1}{x-1}+\frac{x}{x^2-1}=\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x+1}{x^2-1}\)
Suy ra \(M=\frac{2x+1}{x^2-1}.\frac{x^2-x}{2x+1}=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{x}{x+1}\)
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
2) a) Ta có B = \(\frac{x+2}{x-2}-\frac{x-2}{x+2}-\frac{16}{4-x^2}=\frac{\left(x+2\right)^2-\left(x-2\right)^2+16}{\left(x-2\right)\left(x+2\right)}=\frac{8\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{8}{x-2}\)
Khi |x - 1| = 2
=> \(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Khi x = 3 (thỏa mãn) => A = \(\frac{3^2-2.3}{3+1}=\frac{3}{4}\)
Khi x = - 1 (không thỏa mãn) => Không tìm được A
b) Ta có P = \(A.B=\frac{x^2-2x}{x+1}.\frac{8}{x-2}=\frac{8x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{8x}{x+1}\)
Đẻ P < 8
=> \(\frac{8x}{x+1}< 8\Leftrightarrow\frac{x}{x+1}< 1\)
=> \(\orbr{\begin{cases}x< x+1\left(x>-1\right)\\x>x+1\left(x< -1\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x< 1\left(tm\right)\\0x>1\left(\text{loại}\right)\end{cases}}\)
Vậy x > - 1 thì P < 8
a)Với x \(\ne\)-1
Ta có: x2 + x = 0
=> x(x + 1) = 0
=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-1\left(ktm\right)\end{cases}}\)
Với x = 0 => A = \(\frac{0-3}{0+1}=-3\)
b) Ta có: B = \(\frac{3}{x-3}+\frac{6x}{9-x^3}+\frac{x}{x+3}\)
B = \(\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
B = \(\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)
B = \(\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
B = \(\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\)
B = \(\frac{x+3}{x-3}\)
c) Với x \(\ne\)\(\pm\)3; x \(\ne\)-1
Ta có: P = AB = \(\frac{x-3}{x+1}\cdot\frac{x+3}{x-3}=\frac{x+3}{x+1}=\frac{\left(x+1\right)+2}{x+1}=1+\frac{2}{x+1}\)
Để P \(\in\)Z <=> 2 \(⋮\)x + 1
<=> x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}
<=> x \(\in\){0; -2; 1; -3}
a, ĐKXĐ: x\(\ne\) 1;-1;2
b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)
=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{x-2}{x-1}\)
c, Khi x= -1
→A= \(\frac{-1-2}{-1-1}\)
= -3
Vậy khi x= -1 thì A= -3
Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^
a,ĐKXĐ:x#1; x#-1; x#2
b,Ta có:
A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)
=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{x-2}{x+1}\)
c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả
d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên
\(\Leftrightarrow x-2⋮x+1\)
\(\Leftrightarrow x+1-3⋮x+1\)
Mà \(x+1⋮x+1\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)
Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)
Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên