Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Rightarrow\left(x+x+x+...+x\right)+\left(1+2+3+..+100\right)=5750\Rightarrow x.100+\left(100+1\right)\cdot100:2=5750\)\
\(\Rightarrow x.100+5050=5750\Rightarrow x.100=700\Rightarrow x=7\)
b) \(\frac{x+1}{2}=\frac{8}{x+1}\Rightarrow\left(x+1\right)\left(x+1\right)=2.8\)
\(\Rightarrow\left(x+1\right)^2=16\Rightarrow\left(x+1\right)^2=4^2\)
\(\Leftrightarrow x+1=4\Rightarrow x=3\)
1.\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(\Leftrightarrow100x+5050=5750\)
\(\Leftrightarrow100x=5750-5050=700\)
\(\Leftrightarrow x=700:100=7\)
2. \(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Leftrightarrow\left(x+1\right).\left(x+1\right)=8.2\)
\(\Leftrightarrow\left(x+1\right).\left(x+1\right)=16\)
\(\Leftrightarrow\left(x+1\right)^2=16\)
\(\Leftrightarrow\left(x+1\right)=16:2\)
\(\Leftrightarrow\left(x+1\right)=8\)
\(\Leftrightarrow x=8-1=7\)
\(a)\) \(A=4+2^2+2^3+...+2^{20}\)
\(A=2^2+2^2+2^3+...+2^{20}\)
\(2A=2^3+2^3+2^4+...+2^{21}\)
\(2A-A=\left(2^3+2^3+2^4+...+2^{21}\right)-\left(2^2+2^2+2^3+...+2^{20}\right)\)
\(A=2^3+2^{21}-2^2-2^2\)
\(A=2^3+2^{21}-2.2^2\)
\(A=2^3+2^{21}-2^3\)
\(A=2^{21}\)
Vậy \(A=2^{21}\)
\(b)\) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Leftrightarrow\)\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(\Leftrightarrow\)\(100x+\frac{100\left(100+1\right)}{2}=5750\)
\(\Leftrightarrow\)\(100x+5050=5750\)
\(\Leftrightarrow\)\(100x=5750-5050\)
\(\Leftrightarrow\)\(100x=700\)
\(\Leftrightarrow\)\(x=\frac{700}{100}\)
\(\Leftrightarrow\)\(x=7\)
Vậy \(x=7\)
Chúc bạn học tốt ~
A=4+22+23+24+...+220
=22+22+23+24+...+220
=>2A=23+23+24+...+221
=>2A-A=23+23+24+...+221-22-22-23-24-...-220
=>A(2-1)=23+221-22-22
=>A=8+221-4-4
=>A=221
a) x . 100 + (1 + 2 + .... + 100) = 5750
x . 100 + 5050 = 5750
x . 100 = 5750 - 5050
x . 100 = 700
x = 700 : 100
x = 7
b) vô câu hỏi tương tự ấy, lười ghi quá :)))
Đặt A=1+2+22+23+…+220
=>2.A=2+22+23+24+…+221
=>2.A-A=2+22+23+24+…+221-1-2-22-23-…-220
=>A=221-1
Vậy 1+2+22+23+…+220=221-1
(x+1)+(x+2)+(x+3)+…+(x+100)=5750
=>x+1+x+2+x+3+…+x+100=5750
=>(x+x+x+…+x)+(1+2+3+…+100)=5750
Từ 1 đến 100 có:(100-1):1+1=100(số)
=>100.x+(100+1).100:2=5750
=>100.x+101.50=5750
=>100.x+5050=5750
=>100.x=5750-5050
=>100.x=700
=>x=7
Vậy x=7
S=30+32+34+36+...+3200
6S=32+34+36+...+3202
6S-S=(32+34+36+...+3202)-(1+32+34+...+3200)
5S=1+(32-32)+(34-34)+...+(3200-3200)+3202
S=(3200+1):5\(\frac{ }{ }\)
\(\left(x+1\right)+\left(x+2\right)+.....+\left(x+100\right)=5750\)
\(\Rightarrow x+1+x+2+.....+x+100=5750\)
\(\Rightarrow100x+1+2+3+....+100=5750\)
\(\Rightarrow100x+\left[\left(\dfrac{100-1}{1}+1\right):2\right]\left(100+1\right)=5750\)
\(\Rightarrow100x+5050=5750\)
\(\Rightarrow100x=700\)
\(\Rightarrow x=7\)
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
\(\left(x+x+x+...+x\right)+\left(1+2+...+100\right)=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(x=7\)
Vậy ...
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
\(\left(x\cdot100\right)+\left(1+2+...+100\right)=5750\)
\(\left(x\cdot100\right)+\left(100+1\right)\cdot\frac{100}{2}=5750\)
\(\left(x\cdot100\right)+101\cdot50=5750\)
\(\left(x\cdot100\right)+5050=5750\)
\(x\cdot100=5750-5050\)
\(x\cdot100=700\)
\(x=700\div100\)
\(x=7\)
Ta có: ( x+1)+(x+2)+(x+3)+.....+(x+99)+(x+100)=5750
<=>(x+x+x+....+x+x)+(1+2+3+..+99+100)=5750
<=> 100x+5050=5750
=>100x=5750-5050
=>100x=700
=>x=700:100
=>x=7
Vậy x=7
hoặc mở câu hỏi tương tự tham khảo.
[x+1]+[x+2]+...+[x+100]=5750
[1+2+...+100].x=5750
Số các số hạng:
(100-1):1+1=100 số
=>có 100 thừa số x
Tổng trên là:
(1+100)x100:2=5050
=>x.100=5750-5050
=>x.100=700
=>x=700:100
=>x=7
Vậy x = 7
Số số hạng là :
[(x+100)-(x+1)]+1 = 99 + 1 = 100 (số hạng)
Tổng trên là :
[(x+100)+(x+1)].100:2 =(2x+101) . 100 : 2 = 5750
=> (2x+101) . 100 = 11500
=> 2x + 101 = 115
=> 2x = 14
=> x = 7
Ta có: (x + 1) + (x + 2) + ... + (x + 100) = 5750 Đây là tổng của một cấp số cộng với 100 số hạng. Mỗi số hạng có dạng x + i, với i chạy từ 1 đến 100. Tổng của cấp số cộng này có thể viết lại như sau: 100x + (1 + 2 + ... + 100) = 5750 Tổng của các số từ 1 đến 100 là: (100 * (100 + 1)) / 2 = 5050 Vậy ta có: 100x + 5050 = 5750 100x = 5750 - 5050 100x = 700 x = 700 / 100 x = 7 Vậy x = 7
Ta có: (x + 1) + (x + 2) + ... + (x + 100) = 5750 Đây là tổng của một cấp số cộng với 100 số hạng. Mỗi số hạng có dạng x + i, với i chạy từ 1 đến 100. Tổng của cấp số cộng này có thể viết lại như sau: 100x + (1 + 2 + ... + 100) = 5750 Tổng của các số từ 1 đến 100 là: (100 * (100 + 1)) / 2 = 5050 Vậy ta có: 100x + 5050 = 5750 100x = 5750 - 5050 100x = 700 x = 700 / 100 x = 7 Vậy x = 7