Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
\(\left(x\cdot100\right)+\left(1+2+...+100\right)=5750\)
\(\left(x\cdot100\right)+\left(100+1\right)\cdot\frac{100}{2}=5750\)
\(\left(x\cdot100\right)+101\cdot50=5750\)
\(\left(x\cdot100\right)+5050=5750\)
\(x\cdot100=5750-5050\)
\(x\cdot100=700\)
\(x=700\div100\)
\(x=7\)
Ta có: ( x+1)+(x+2)+(x+3)+.....+(x+99)+(x+100)=5750
<=>(x+x+x+....+x+x)+(1+2+3+..+99+100)=5750
<=> 100x+5050=5750
=>100x=5750-5050
=>100x=700
=>x=700:100
=>x=7
Vậy x=7
hoặc mở câu hỏi tương tự tham khảo.
\(a)\) \(A=4+2^2+2^3+...+2^{20}\)
\(A=2^2+2^2+2^3+...+2^{20}\)
\(2A=2^3+2^3+2^4+...+2^{21}\)
\(2A-A=\left(2^3+2^3+2^4+...+2^{21}\right)-\left(2^2+2^2+2^3+...+2^{20}\right)\)
\(A=2^3+2^{21}-2^2-2^2\)
\(A=2^3+2^{21}-2.2^2\)
\(A=2^3+2^{21}-2^3\)
\(A=2^{21}\)
Vậy \(A=2^{21}\)
\(b)\) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Leftrightarrow\)\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(\Leftrightarrow\)\(100x+\frac{100\left(100+1\right)}{2}=5750\)
\(\Leftrightarrow\)\(100x+5050=5750\)
\(\Leftrightarrow\)\(100x=5750-5050\)
\(\Leftrightarrow\)\(100x=700\)
\(\Leftrightarrow\)\(x=\frac{700}{100}\)
\(\Leftrightarrow\)\(x=7\)
Vậy \(x=7\)
Chúc bạn học tốt ~
=> x + 1 + x + 2 + ... + x + 100 = 5750
=> ( x + x + ... + x ) + ( 1 + 2 + .... + 100 ) = 5750
=> 100x + 5050 = 5750
=> 100x = 5750 - 5050
=> 100x = 700
=> x = 7 00 : 100
=> x = 7
x + x + x + x + ....+x +x + 1 + 2 + 3 + .... + 100 = 5750
100x + 5050 = 5750
100x = 5750 - 5050
100x = 700
x = 700 : 100
x = 7
=(x+x+...+x)+(1+2+...+100)=5750
=100x+5050=5750
100x=5750-5050
100x=700
x=700/100=7
(x+1)+(x+2)+....+(x+100)=5750
x+1+x+2+...+x+100 =5750
\(x\)x100+1+2+...+100 =5750
bí hihi
tự làm nha
Lời giải:
a) Hiển nhiên vế trái $\geq 0$ do tính chất của trị tuyệt đối.
$\Rightarrow 4x\geq 0\Rightarrow x\geq 0$. Đến đây ta có thể phá bỏ dấu trị tuyệt đối
$|x+\frac{11}{17}|+|x+\frac{2}{17}|+|x+\frac{4}{17}|=4x$
$x+\frac{11}{17}+x+\frac{2}{17}+x+\frac{4}{17}=4x$
$3x+1=4x$
$x=1$
b) Hiển nhiên vế trái $\geq 0$ nên $11x\geq 0\Rightarrow x\geq 0$
Khi đó:
$|x+\frac{1}{2}|+|x+\frac{1}{6}|+|x+\frac{1}{12}|+...+|x+\frac{1}{110}|=x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}$
$=10x+(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110})$
$=10x+(1-\frac{1}{11})=10x+\frac{10}{11}=11x$
$\Rightarrow x=\frac{10}{11}$
trời đất dung hoa vạn vật sinh sôi con mẹ mày lôi thôi đầu xanh mỏ đỏ gặp cỏ thay cơm đầu tóc bờm sờm khạc đờm tung tóe mà TAO ĐỊT CON MẸ MÀY NHƯ LỒN TRAU LỒN CHÓ LỒN BÓ XI MĂNG LỒN CHẰNG MẠNG NHỆN MÀ LỒN BẸN LÁ KHOÁI LỒN KHAI LÁ MIT LỒN ĐÍT LỒN TƠM LỒN TƠM LỒN ĐẬM LỒN GIA MAI LỒN ỈA CHẢY LỒN NHẨY HIPHOP LỒN LÔ XỐP LỒN HÀNG HIỆU LỒN HÀNG TRIỆU CON SÚC VẬT MÀ NÓ ĐÂM VÀO CÁI CON ĐĨ MẸ MÀY TỪ TRÊN CAO MÀ LAO ĐẦU XUỐNG ĐẤT ĐỊT LẤT PHẤT NHƯ MƯA RƠI
a, Vì trong mỗi ngoặc có một số hạng nên vì có 100 số hạng nên có 100x
ta có 100x+(1+2+3+.....+100)=5750
100x+5050=5750
100x=5750-5050
100x=700
x=700:100
x=7
nếu tính ko nhầm
a)(x+1)+(x+2)+...+(x+100)=5750
(x+x+...+x)+(1+2+...+100)=5750
1+2+...+100 có: (100-1)+1 =100 số hạng
1+2+...+100=(100+1)*100/2=5050
=>100x+5050=5750
100x=5750-5050
100x=700
x=700/100
x=7. Vậy x=7
\(\left|x+1\right|+\left|x+2\right|+...+\left|x+100\right|=605x\)(1)
Vì \(VT>0\forall x\)
\(\Rightarrow VP>0\Leftrightarrow605x>0\Leftrightarrow x>0\)
Khi đó \(\left(1\right)\Leftrightarrow x+1+x+2+...+x+100=605x\)
\(\Leftrightarrow100x+5050=605x\)
\(\Leftrightarrow505x=5050\)
\(\Leftrightarrow x=10\)( thỏa mãn )
Vậy....
\(1\)) \(70:\frac{4x+720}{x}=\frac{1}{2}\)
\(\Leftrightarrow\frac{4x+720}{x}=70:\frac{1}{2}\)
\(\Leftrightarrow\frac{4x+720}{x}=140\)
\(\Leftrightarrow\left(4x+720\right):x=140\)
\(\Leftrightarrow4x+720=140.x\)
\(\Leftrightarrow4x-140x=-720\)
\(\Leftrightarrow x.\left(-136\right)=-720\)
\(\Leftrightarrow x=-720:\left(-136\right)\)
\(\Leftrightarrow x=\frac{90}{17}\)
\(2\)) Mình đang nghĩ
\(\left(x+1\right)+\left(x+2\right)+.....+\left(x+100\right)=5750\)
\(\Rightarrow x+1+x+2+.....+x+100=5750\)
\(\Rightarrow100x+1+2+3+....+100=5750\)
\(\Rightarrow100x+\left[\left(\dfrac{100-1}{1}+1\right):2\right]\left(100+1\right)=5750\)
\(\Rightarrow100x+5050=5750\)
\(\Rightarrow100x=700\)
\(\Rightarrow x=7\)
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
\(\left(x+x+x+...+x\right)+\left(1+2+...+100\right)=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(x=7\)
Vậy ...