Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
mà góc BAC=90 độ
nên ABDC là hình chữ nhật
=>AB//CD và AB=CD
b: Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
=>ΔABC=ΔCDA
c: ΔCBA vuông tại A
mà AM là trung tuyến
nên AM=BC/2
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔBAD=ΔBED
nên BA=BE
=>ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
27x=3x+2
\(\Rightarrow3^{3x}=3^{x+2}\)
\(\Rightarrow3x=x+2\)
\(\Rightarrow3x-x=2\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
Vậy x=1
Chúc bn học tốt
27x = 3x+2
(33)x=3x+2
3x=x+2
3x-x=2
2x=2
x=2:2
x=1
Vậy x=1
a: Xét ΔABC có
M là trung điểm của BC
MP//AC
DO đó: P là trung điểm của AB
hay PA=PB
b: Xét ΔABC có
M là trung điểm của BC
MN//AB
Do đó: N là trung điểm của AC
Xét ΔABC có
P là trung điểm của AB
N là trung điểm của AC
Do đó: PN là đường trung bình
=>PN//BC
a: Xét ΔABD và ΔHBD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔABD=ΔHBD
b: Ta có: ΔABD=ΔHBD
nên \(\widehat{BAD}=\widehat{BHD}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BHD}=90^0\)
hay DH\(\perp\)BC
a: Xét ΔIMC vuông tại I và ΔINC vuông tại I có
IM=IN
CI chung
Do đó: ΔIMC=ΔINC
b: Xét ΔCKB có
M là trung điểm của BC
MN//KB
Do đó: N là trung điểm của CK
An
Kết bạn đi e