Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho x,y,z thỏa mãn xyz=1. cm: 1/ xy+x+1 +1/ yz+y+1 +1/ xyz+yz+y =1 ... Ta có:1/1+x+xy + 1/1+y+yz +1/1+z+xz= xyz/ xyz+x+xy +1/1+y+yz + xyz/xyz+z+xz ..... cho x,y,z>0 và xyz=1. cmr x/(xy+x+1)^2+y/(yz+y+1)^2+z/(zx+z+1)^2 >= 1/x+y+z
Ta có: \(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
= \(\frac{z-x}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\frac{x-y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\frac{y-z}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\)
= \(\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
= \(\frac{0}{ }\)
(x + y + z)2 - 2(x + y + z)(x + y) + (x + y)2
= (x + y + z + x +y)2
= (2x + 2y + z)2
Chúc bạn học tốt !
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)
\(=\left(x+y+z-x-y\right)^2\)
\(=z^2\)
Áp dụng BĐT: \(\left(a-b\right)^2=a^2-2ab+b^2\)
A=(x+y)^3+3(x+y)^2*z+3(x+y)*z^2+z^3-(x+y)^3+3(x+y)^2*z^2-3(x+y)*z^2+z^3-(x-y+z)^3+(x-y-z)^3
=6(x+y)^2+2z^3+(x-y)^3-3(x-y)^2*z+3(x-y)*z^2-z^3-(x-y)^3-3*(x-y)^2*z-3*(x-y)*z^2-z^3
=6(x+y)^2+2z^3-6(x-y)^2-2z^3=0
Ta có (a - b)² = (b - a)²
Vậy biểu thức viết lại dưới dạng: a² + 2ab + b² (Với a = x - y + z và b = y - z)
(x - y + z)² + (z - y)² + 2(x - y + z)(y - z)
= (x - y + z)² + 2(x - y + z)(y - z) + (y - z)²
= (x - y + z + y - z)²
= x²
Vì bạn lạp thôi chứ chưa mua nên không có víp 🤫🤫🤫