Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D 4 6 H O
Kéo dài đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại D . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC
Vì tam giác ABC cân tại A nên AHlà đường trung trực của BC . Nên AD là đường trung trực của BC .
Khi đó O thuộc AD hay AD là đường kính của đường tròn ngoại tiếp tam giác ABC
Tam giác ACD nội tiếp trong (O ) có AD là đường khính suy ra \(\widehat{ACD=90}\)độ
Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :
\(CH^2=HA.HD\)
\(\Rightarrow\)\(HD=\frac{CH^2}{HA}=\frac{\left(\frac{BC}{2}\right)^2}{HA}=\frac{\left(\frac{12}{2}^2\right)}{4}=\frac{6^2}{4}=9cm\)
Ta có \(AD=AH+HD=4+9=13\left(cm\right)\)
Vậy bán kính của đường tròn (O ) là :
\(R=\frac{AD}{2}=\frac{13}{2}=6,5\left(cm\right)\)
Chúc bạn học tốt !!!
(Hình)
Diện tích tam giác ABC là:
SABC = 1/2 . AH . BC = 1/2 . 4 . 12 = 24 (cm2)
Vì tam giác ABC cân tại A nên đường cao AH là trung tuyến BC
Nên : BH= HC= 1/2. BC= 1/2 . 12 = 6 (cm)
Trong tam giác AHB:
Áp dụng ĐL pi-ta-go:
AB2 = AH2 + BH2
AB2 = 42 + 62
AB= \(2\sqrt{13}\) (cm)
Vì tam giác ABC cân tại A nên : AB = AC = \(2\sqrt{13}\) (cm)
Ta có : SABC =\(\frac{AB\cdot AC\cdot BC}{4R}\) (R là bán kính đường tòn ngoại tiếp tam giác ABC)
<=> \(24=\frac{2\sqrt{13}.2\sqrt{13}.12}{4R}\)
<=> R= \(\frac{13}{2}\) (cm)
OK
![](https://rs.olm.vn/images/avt/0.png?1311)
Kéo dài đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại D. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC.
Vì tam giác ABC cân tại A nên AH là đường trung trực của BC. Suy ra AD là đường trung trực của BC.
Khi đó O thuộc AD hay AD là đường kính của đường tròn ngoại tiếp tam giác ABC.
Tam giác ACD nội tiếp trong (O) có AD là đường kính nên suy ra góc (ACD) = 90 °
Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có: C H 2 = HA.HD
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét \(\Delta\) vuông tại H \(ABH\) có :
\(tan\widehat{BAH}=tan60^o=\dfrac{BH}{AH}\Rightarrow BH=AH.tan60^o=2\sqrt[]{3}.\sqrt[]{3}=6\)
Xét \(\Delta\) vuông tại H \(ACH\) có :
\(\widehat{HAC}=90^o-\widehat{BAH}=90^o-60^o=30^o\)
\(tan\widehat{HAC}=tan30^o=\dfrac{CH}{AH}\Rightarrow CH=AH.tan30^o=2\sqrt[]{3}.\dfrac{1}{\sqrt[]{3}}=2\)
Tâm đường tròn ngoại tiếp tam giác vuông ABC là trung điểm BC
\(\Rightarrow\) Bán kính đường tròn này là :
\(R=\dfrac{BC}{2}=\dfrac{BH+CH}{2}=\dfrac{6+2}{2}=4\)
Ta có: Vì tam giác ABC cân tại A đường cao AH nên suy ra: BH = HC = \(\dfrac{1}{2}\)BC = 18 ( cm )
Diện tích của tam giác ABC là:
\(S=\dfrac{1}{2}\times AH\times BC=\dfrac{1}{2}\times12\times36=216\left(cm^2\right)\)
Áp dụng định lí Pytago trong tam giác AHC, H = 90 độ, có:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+18^2\)
\(\Leftrightarrow AC=6\sqrt{13}\)
Ta có: Tam giác ABC cân tại A nên AB = AC = \(6\sqrt{13}\)
Đặt a = BC, b = AC, c = AB
=> \(R=\dfrac{abc}{4S_{ABC}}=\dfrac{6\sqrt{13}\times6\sqrt{13}\times36}{4\times216}=19,5\left(cm\right)\)
Vậy bán kính đường tròn đi qua 3 đỉnh tam giác ABC là: 19,5cm