Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu E
\(\left\{{}\begin{matrix}x\ne\dfrac{5}{2}\\\left(2x-5\right)\left(5-2x\right)=-\left(\dfrac{3}{2}\right)^4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{5}{2}\\\left|2x-5\right|=\left(\dfrac{3}{2}\right)^2\end{matrix}\right.\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\2x-5=-\left(\dfrac{3}{2}\right)^2\Rightarrow x=\dfrac{11}{8}< \dfrac{5}{2}\left(n\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{5}{2}\\2x-5=\left(\dfrac{3}{2}\right)^2\Rightarrow x=\dfrac{29}{8}>\dfrac{5}{2}\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
câu F (bạn cho vào lớp 7.2=lớp 14 nhé. )
bài 1) ta có : \(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow2\left(x+y\right)=3\left(2x-y\right)\)
\(\Leftrightarrow2x+2y=6x-3y\Leftrightarrow4x=5y\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)
vậy \(\dfrac{x}{y}=\dfrac{5}{4}\)
bài 1
\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow\dfrac{2.\dfrac{x}{y}-1}{\dfrac{x}{y}+1}=\dfrac{2.\dfrac{x}{y}+2-3}{\dfrac{x}{y}+1}=2-\dfrac{3}{\dfrac{x}{y}+1}=\dfrac{2}{3}\)
\(2-\dfrac{2}{3}=\dfrac{4}{3}=\dfrac{3}{\dfrac{x}{y}+1}\)
\(\left(\dfrac{x}{y}+1\right)=\dfrac{9}{4}\Rightarrow\dfrac{x}{y}=\dfrac{9}{4}-\dfrac{4}{4}=\dfrac{5}{4}\)
a) \(x^2=\left(-15\right).\left(-60\right)=900=>x=\)\(\pm\)\(30\)
b) \(-x^2=\dfrac{-16}{25}=>x^2=\dfrac{16}{25}=>x=\)\(\pm\)\(\dfrac{4}{5}\)
a)\(\dfrac{x}{-15}\)= \(-\dfrac{60}{x}\)
=> x . x = -15 . (-60)
=> \(^{x^2}\) = 900
x = 30
b) \(-\dfrac{2}{x}\) = \(-\dfrac{x}{\dfrac{8}{25}}\)
=> -2 . \(\dfrac{8}{25}\) = x . (-x)
=> \(\dfrac{-16}{25}\) = \(^{x^2}\)
=> x = \(\dfrac{4}{5}\)và \(-\dfrac{4}{5}\)
nhớ tích cho mk vs nha >_<
a: Đặt A=0
=>-2/3x=5/9
hay x=-5/6
b: Đặt B(x)=0
=>(x-2/5)(x+2/5)=0
=>x=2/5 hoặc x=-2/5
c: Đặt C(X)=0
\(\Leftrightarrow x^3\cdot\dfrac{1}{2}=-\dfrac{4}{27}\)
\(\Leftrightarrow x^3=-\dfrac{8}{27}\)
hay x=-2/3
a/ \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{8}-\dfrac{y}{4}=\dfrac{5}{x}\)
\(\Rightarrow\dfrac{1}{8}-\dfrac{2y}{8}=\dfrac{5}{x}\)
\(\Leftrightarrow\dfrac{1-2y}{8}=\dfrac{5}{x}\)
\(\Leftrightarrow\left(1-2y\right)x=40\)
Vì \(x,y\in Z;1-2y\in Z;1-2y,x\inƯ\left(40\right)\)
Mà \(1-2y⋮2̸\)
Ta có bảng :
\(y\) | \(1-2y\) | \(x\) | \(Đk\) \(x,y\in Z\) |
\(0\) | \(1\) | \(40\) | tm |
\(1\) | \(-1\) | \(-40\) | tm |
\(8\) | \(5\) | \(8\) | tm |
\(3\) | \(-5\) | \(-8\) | tm |
Vậy .................
Ta có :
\(25-y^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow8\left(x-2009\right)^2=25-y^2\)
\(\Leftrightarrow8\left(x-2009\right)^2+y^2=25\)\(\left(1\right)\)
Vì \(y^2\ge0\Leftrightarrow\left(x-2009\right)^2\le\dfrac{25}{8}\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2009\right)^2=0\\\left(x-2009\right)^2=1\end{matrix}\right.\)
+) Với \(\left(x-2009\right)^2=0\) thay vào \(\left(1\right)\Leftrightarrow y^2=25\Leftrightarrow\)\(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)
+) Với \(\left(x-2009\right)^2=1\) thay vào \(\left(1\right)\Leftrightarrow y^2=17\left(loại\right)\)
Vậy ..
b: 2x^3-1=15
=>2x^3=16
=>x=2
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)
=>y-25=32; z+9=50
=>y=57; z=41
d: 3/5x=2/3y
=>9x=10y
=>x/10=y/9=k
=>x=10k; y=9k
x^2-y^2=38
=>100k^2-81k^2=38
=>19k^2=38
=>k^2=2
TH1: k=căn 2
=>\(x=10\sqrt{2};y=9\sqrt{2}\)
TH2: k=-căn 2
=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)
3, Tìm x, biết
\(d,\dfrac{-16}{x}=\dfrac{x}{-4}=>x^2=\left(-16\right).\left(-4\right)=>x^2=64\)
\(=>x=8\) hay \(x=-8\)
\(e,\dfrac{x}{-2}=\dfrac{\dfrac{8}{25}}{-x}=>-x^2=-2.\dfrac{8}{5}=\dfrac{-16}{25}\)
\(=>-x^2=0,64=>x=0,8\)
\(g,\dfrac{x}{-15}=\dfrac{-60}{x}\)
\(=>x^2=\left(-15\right).\left(-60\right)\)\(=>x^2=900=>x=30\) hay \(x=-30\)
d) \(\dfrac{-16}{x}=\dfrac{x}{-4}\)
= 16 . 4 = x.x
= 64 = \(x^2\)
= \(8^2=x^2\)
vậy x = 8
e)\(\dfrac{x}{-2}=\dfrac{8}{\dfrac{25}{-x}}\)
= -2 . \(\dfrac{8}{25}\) = -x . x
= -0,64 = \(-x^2\)
= 0,64 = \(x^2\)
0,8\(^2=x^2\)
vậy x = 0,8
g) \(\dfrac{x}{-15}=\dfrac{-60}{x}\)
= -15 . -60 = x.x
= 900 = \(x^2\)
30 \(^2=x^2\)
vậy x = 30
a: |x-1/2|=7/2
=>x-1/2=7/2 hoặc x-1/2=-7/2
=>x=4 hoặc x=-3
b: \(x:\dfrac{3}{8}+\dfrac{5}{8}=x\)
=>8/3x-x=-5/8
=>5/3x=-5/8
hay x=-5/8:5/3=-5/8x3/5=-15/40=-3/8
c: \(\dfrac{5}{6}-\left|x-\dfrac{1}{2}\right|=\dfrac{15}{18}=\dfrac{5}{6}\)
=>|x-1/2|=0
=>x-1/2=0
hay x=1/2
e: \(\left(5x-3\right)^2-\dfrac{1}{64}=0\)
=>(5x-3)2=1/64
=>5x-3=1/8 hoặc 5x-3=-1/8
=>5x=25/8 hoặc 5x=23/8
=>x=5/8 hoặc x=23/40
Điều kiện : x khác 0
\(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\)
\(\Leftrightarrow-x^2=-2.\dfrac{8}{25}\)
\(\Leftrightarrow-x^2=-\dfrac{16}{25}\)
\(\Leftrightarrow x^2=\dfrac{16}{25}\)
\(\Leftrightarrow x=\dfrac{4}{5}\)(tmđk)
Vậy x = \(\dfrac{4}{5}\)
\(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\left(x\ne0\right)\)
\(\Rightarrow x.\left(-x\right)=-2.\dfrac{8}{25}\)
\(\Rightarrow-x^2=-\dfrac{16}{25}\)
\(\Rightarrow x^2=\dfrac{16}{25}\)
\(\Rightarrow x^2=\left(\pm\dfrac{4}{5}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{4}{5};-\dfrac{4}{5}\right\}\)