\(\in\) Z biết :

a, \(\dfrac{5}{x}\) +

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

a/ \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{8}-\dfrac{y}{4}=\dfrac{5}{x}\)

\(\Rightarrow\dfrac{1}{8}-\dfrac{2y}{8}=\dfrac{5}{x}\)

\(\Leftrightarrow\dfrac{1-2y}{8}=\dfrac{5}{x}\)

\(\Leftrightarrow\left(1-2y\right)x=40\)

\(x,y\in Z;1-2y\in Z;1-2y,x\inƯ\left(40\right)\)

\(1-2y⋮2̸\)

Ta có bảng :

\(y\) \(1-2y\) \(x\) \(Đk\) \(x,y\in Z\)
\(0\) \(1\) \(40\) tm
\(1\) \(-1\) \(-40\) tm
\(8\) \(5\) \(8\) tm
\(3\) \(-5\) \(-8\) tm

Vậy .................

24 tháng 9 2017

Ta có :

\(25-y^2=8\left(x-2009\right)^2\)

\(\Leftrightarrow8\left(x-2009\right)^2=25-y^2\)

\(\Leftrightarrow8\left(x-2009\right)^2+y^2=25\)\(\left(1\right)\)

\(y^2\ge0\Leftrightarrow\left(x-2009\right)^2\le\dfrac{25}{8}\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2009\right)^2=0\\\left(x-2009\right)^2=1\end{matrix}\right.\)

+) Với \(\left(x-2009\right)^2=0\) thay vào \(\left(1\right)\Leftrightarrow y^2=25\Leftrightarrow\)\(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)

+) Với \(\left(x-2009\right)^2=1\) thay vào \(\left(1\right)\Leftrightarrow y^2=17\left(loại\right)\)

Vậy ..

11 tháng 9 2019

Tính chất của dãy tỉ số bằng nhau

b: 2x^3-1=15

=>2x^3=16

=>x=2

\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)

=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)

=>y-25=32; z+9=50

=>y=57; z=41

d: 3/5x=2/3y

=>9x=10y

=>x/10=y/9=k

=>x=10k; y=9k

x^2-y^2=38

=>100k^2-81k^2=38

=>19k^2=38

=>k^2=2

TH1: k=căn 2

=>\(x=10\sqrt{2};y=9\sqrt{2}\)

TH2: k=-căn 2

=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)

27 tháng 9 2017

Bài 1:

\(a,\dfrac{x}{3}=\dfrac{y}{7}\)\(x+y=20\)

\(=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)

\(\Rightarrow x=2.3=6\)

\(y=2.7=14\)

Vậy \(x=6\)\(y=14\)

\(b,\dfrac{x}{5}=\dfrac{y}{2}\)\(x-y=6\)

\(=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)

\(\Rightarrow x=2.5=10\)

\(y=2.2=4\)

Vậy \(x=10\)\(y=4\)

\(c,\dfrac{x}{7}=\dfrac{18}{14}\)

Từ tỉ lệ thức trên ta có:

\(14x=7.18\)

\(x=\dfrac{7.18}{14}\)

\(x=9\)

Vậy \(x=9\)

\(d,6:x=1\dfrac{3}{4}:5\)

\(6:x=\dfrac{7}{20}\)

\(x=6:\dfrac{7}{20}\)

\(x=\dfrac{120}{7}\)

Vậy \(x=\dfrac{120}{7}\)

\(e,\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(x-y+z=8\)

\(=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)

\(\Rightarrow x=2.2=4\)

\(y=2.4=8\)

\(z=2.6=12\)

Vậy \(x=4;y=8;z=12\)

27 tháng 9 2017

a, \(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{1}{2}\)

Từ đó suy ra x=1,5; y=3,5

b,\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{1}{2}\)

Từ đó suy ra x=2,5; y=1

c,\(\dfrac{x}{7}=\dfrac{18}{14}\Leftrightarrow\dfrac{x}{7}=\dfrac{9}{7}\Rightarrow x=9\)

d,\(\dfrac{6}{x}=\dfrac{\dfrac{7}{4}}{5}\Leftrightarrow\dfrac{6}{x}=\dfrac{24}{7}\left(\dfrac{\dfrac{7}{4}}{5}\right)\Leftrightarrow\dfrac{6}{x}=\dfrac{6}{\dfrac{120}{7}}\Rightarrow x=\dfrac{120}{7}\)

e,\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{8}=\dfrac{x-y+z}{2-4+8}=\dfrac{4}{3}\)

Từ đó suy ra x=\(\dfrac{8}{3}\); y=\(\dfrac{16}{3}\); z=\(\dfrac{32}{3}\)

8 tháng 12 2018

Cậu không làm được hay cần gấp con nào nhỉ ?

Bài 1:

a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)

=>2x-10=x+2

=>x=12

b: \(\Leftrightarrow\left(x+2\right)^2=100\)

=>x+2=10 hoặc x+2=-10

=>x=-12 hoặc x=8

c: \(\Leftrightarrow\left(2x-5\right)^3=27\)

=>2x-5=3

=>2x=8

=>x=4

b: Ta có: x/y=7/9

nên x/7=y/9

=>x/49=y/63

Ta có: y/z=7/3

nên y/7=z/3

=>y/63=z/27

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)

Do đó: x=-735/13; y=-945/13; z=-405/13

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)

Do đó: x=14; y=40; z=64

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)

Do đó: x=24; y=15; z=6

17 tháng 7 2017

bài 1) ta có : \(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow2\left(x+y\right)=3\left(2x-y\right)\)

\(\Leftrightarrow2x+2y=6x-3y\Leftrightarrow4x=5y\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)

vậy \(\dfrac{x}{y}=\dfrac{5}{4}\)

18 tháng 7 2017

bài 1

\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow\dfrac{2.\dfrac{x}{y}-1}{\dfrac{x}{y}+1}=\dfrac{2.\dfrac{x}{y}+2-3}{\dfrac{x}{y}+1}=2-\dfrac{3}{\dfrac{x}{y}+1}=\dfrac{2}{3}\)

\(2-\dfrac{2}{3}=\dfrac{4}{3}=\dfrac{3}{\dfrac{x}{y}+1}\)

\(\left(\dfrac{x}{y}+1\right)=\dfrac{9}{4}\Rightarrow\dfrac{x}{y}=\dfrac{9}{4}-\dfrac{4}{4}=\dfrac{5}{4}\)

3 tháng 12 2017

phần a

vì x/2= y/3

y/5= z/4

=>x/2 nhân 1.5 = y/3 nhân 1/5

=> y/5 nhân 1/3 = z/4 nhân 1/3

=>x/10 = y/15 (1)

=>y/15 = z/12 (2)

Từ (1) , (2) ta có :

x/10 = y/15 = z/12

áp dụng t/c......

=>x/10 = y/15 = z/12

=>x+y+z/10+15+12

=> -49/37

b lm tiếp bc tiếp theo nhé✔

Vì mk cmt đầu tiên lên b tích dùm m☢

25 tháng 8 2017

a. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{5}=\dfrac{y}{7}=\dfrac{y-2x}{7-5}=\dfrac{24}{2}=12\)

\(\Rightarrow2x=12\cdot5=60\Rightarrow x=60:2=30\)

\(y=12\cdot7=84\)

Vậy x = 30 ; y = 84

b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+3y}{3+2\cdot3}=\dfrac{18}{9}=2\)

\(\Rightarrow x=2\cdot3=6\)

\(y=2\cdot2=4\)

Vậy x = 6 ; y = 4

c. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)

\(\Rightarrow x=2\cdot2=4\)

\(y=3\cdot2=6\)

\(z=4\cdot2=8\)

Vậy x = 4 ; y = 6 ; z = 8

d. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-y-z}{2-3-4}=\dfrac{15}{-5}=-3\)

\(\Rightarrow x=-3\cdot2=-6\)

\(y=-3\cdot3=-9\)

\(z=-3\cdot4=-12\)

Vậy \(x=-4;y=-6;z=-8\)

3 tháng 11 2018

e, Đặt \(\dfrac{x}{4}=\dfrac{y}{5}=k\left(k\in Z\right)\)

\(\Leftrightarrow x=4k,y=5k\) (1)

Theo bài ra ta có: xy = 80

Từ (1) \(\Rightarrow4k.5k=80\Rightarrow20.k^2=80\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k^2=2^2\\k^2=\left(-2\right)^2\end{matrix}\right.\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)

+ Với k = 2 \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)

+ Với k = -2 \(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-10\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(8,10\right);\left(-8,-10\right)\right\}\)

3 tháng 11 2018

a) \(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x}{15}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5-6}=\dfrac{-16}{4}=-4\Rightarrow\left[{}\begin{matrix}\dfrac{x}{3}=-4\\\dfrac{y}{5}=-4\\\dfrac{z}{-2}=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-12\\y=-20\\z=8\end{matrix}\right.\)