
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Tìm số dư trong phép chia (2023\(\left(2023^{2024}+2024^{2025}+2025^{2026}\right)^{10}\)chia cho 111


\(\frac{2015}{2016}< \frac{2016}{2016}=1=\frac{2034}{2034}< \frac{2035}{2034}\)
\(\Rightarrow\frac{2015}{2016}< \frac{2035}{2034}\)
\(\frac{-2025}{2024}< \frac{-2024}{2024}=-1< \frac{-2026}{2027}\)
\(\Rightarrow\frac{-2025}{2024}< \frac{-2026}{2027}\)
#)Giải :
a) Ta có :
\(1-\frac{2015}{2016}=\frac{1}{2016}\)
\(1-\frac{2035}{2036}=\frac{1}{2036}\)
Vì \(\frac{1}{2016}>\frac{1}{2036}\Rightarrow\frac{2015}{2016}>\frac{2035}{2036}\)
b) Ta có :
\(1+\frac{-2025}{2024}=\frac{-1}{2024}\)
\(1+-\frac{2026}{2027}=\frac{-1}{2027}\)
Vì \(\frac{-1}{2024}< \frac{-1}{2027}\Rightarrow\frac{-2025}{2024}< \frac{-2026}{2027}\)

Ta có: \(\left(2x-1\right)^{2024}\ge0\)
\(\left|x+y+1\right|\ge0\) nên \(\left|x+y+1\right|^{2025}\ge0\)
Suy ra: \(\left(2x-1\right)^{2024}+\left|x+y+1\right|^{2025}\ge0\)
Dấu "=" xảy ra khi và chỉ khi:
\(\begin{cases}2x-1=0\\ x+y+1=0\end{cases}\rArr\begin{cases}2x=1\\ x+y=-1\end{cases}\rArr\begin{cases}x=\frac12\\ y=-1-\frac12=-\frac32\end{cases}\)
Vậy: \(x=\frac12;y=-\frac32\)
2x−1)2024≥0 vì lũy thừa bội/chẵn của một số cho kết quả không âm
\(\mid x + y + 1 \mid^{2025} = \left(\right. \mid x + y + 1 \mid \left.\right)^{2025} \geq 0\) vì giá trị tuyệt đối không âm, mũ lẻ hay chẵn đều không làm nó âm
Nếu tổng của hai số không âm bằng \(0\) thì mỗi số phải bằng \(0\) (nếu một trong hai dương thì tổng > 0 — mâu thuẫn)
Vậy
\(\left(\right. 2 x - 1 \left.\right)^{2024} = 0 \Rightarrow x = \frac{1}{2} ,\) \(\mid x+y+1\mid^{2025}=0\Rightarrow\mid x+y+1\mid=0\Rightarrow y=-x-1\)Thay \(x = \frac{1}{2}\) được \(y = - \frac{3}{2}\)
vậy
\(\left(\right.x,y\left.\right)=\left(\right.\frac{1}{2},\textrm{ }-\frac{3}{2}\left.\right)\)

\(\left|x+1\right|+\left|x+2\right|+.........+\left|x+101\right|=2024x\)
\(\Leftrightarrow\left|101x+\dfrac{\left[\left(101-1\right):1+1\right]\left(101+1\right)}{2}\right|=2024x\)
\(\Leftrightarrow\left|101x+5151\right|=2024x\)
\(\Leftrightarrow\left|101x+5151\right|-2024x=0\)
\(\Leftrightarrow-1923x+5151=0\)
\(\Leftrightarrow-1923x=5151\)
\(\Leftrightarrow x=\dfrac{5151}{-1923}\)
Vậy ..
đề mình ko ghi lại nhé
\(\Rightarrow\left|101x+\dfrac{\left[\left(101-1\right):1+1\right]\left(101+1\right)}{2}\right|=2024x\)
\(\Rightarrow\left|101x+5151\right|=2024x\)
\(\Rightarrow-1923+5151=0\)
\(\Rightarrow-1923x=5151\Rightarrow x=\dfrac{5151}{-1923}\)

\(S=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}+...+\frac{1}{\sqrt{2025}-\sqrt{2024}}\)
Ta nhận xét thấy mỗi số hạng trong S đều dương. Từ đó ta đặt
\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}+...+\frac{1}{\sqrt{2024}-\sqrt{2023}}\left(A>0\right)\)
\(\Rightarrow S=A+\frac{1}{\sqrt{2025}-\sqrt{2024}}=A+\frac{\sqrt{2025}+\sqrt{2024}}{\left(\sqrt{2025}-\sqrt{2024}\right)\left(\sqrt{2025}+\sqrt{2024}\right)}\)
\(=A+\sqrt{2025}+\sqrt{2024}>\sqrt{2025}=45\)
Vậy \(S>45\)
PS: Phan Thanh Tịnh xem lại bài giải nhé bạn
Ta có : 1 = (n + 1) - n =\(\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\)
\(=\left(\sqrt{n+1}\right)^2-\sqrt{n+1}.\sqrt{n}+\sqrt{n+1}.\sqrt{n}+\left(\sqrt{n}\right)^2\)
\(=\sqrt{n+1}.\left(\sqrt{n+1}-\sqrt{n}\right)+\sqrt{n}.\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(=\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n-1}+\sqrt{n}\right)\)\
\(\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)
Áp dụng vào bài toán,ta có :
\(S=\sqrt{1}+\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2025}-\sqrt{2024}=\sqrt{2025}\)= 45
Vậy S = 45

2, \(\Rightarrow\left\{{}\begin{matrix}\\\dfrac{5}{4}x-\dfrac{7}{2}=0\\\dfrac{5}{8}x+\dfrac{3}{5}=0\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{14}{5}\\\\x=\dfrac{-24}{25}\\\end{matrix}\right.\)

\(a,\dfrac{2}{3}-\dfrac{1}{3}\left(x-\dfrac{3}{2}\right)-\dfrac{1}{2}\left(2x+1\right)=5\)
\(\dfrac{2}{3}-\dfrac{1}{3}x-\dfrac{1}{2}-x+\dfrac{1}{2}=5\)
\(\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}x-x=5\)
\(\dfrac{2}{3}-\dfrac{1}{3}x-x=5\)
\(\dfrac{2}{3}-\dfrac{4}{3}x=5\)
\(\dfrac{4}{3}x=\dfrac{2}{3}-5\)
\(\dfrac{4}{3}x=-\dfrac{13}{3}\)
\(x=-\dfrac{13}{3}:\dfrac{4}{3}\)
\(x=-\dfrac{13}{4}\)
Vậy...............
\(b,\left(x+\dfrac{1}{2}\right)\left(\dfrac{3}{4}-x\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{3}{4}-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy................
\(c,\dfrac{2x-1}{-3+2}=0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy.............

a/ \(\left(x+1\right)\left(x-2\right)< 0\)
TH1:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\) (vô lý)
TH2:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow-1< x< 2\)
Vậy.........
b/ \(\left(x-3\right)\left(x-4\right)>0\)
TH1:\(\left\{{}\begin{matrix}x-3>0\\x-4>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>3\\x>4\end{matrix}\right.\)\(\Rightarrow x>4\)
TH2:\(\left\{{}\begin{matrix}x-3< 0\\x-4< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< 3\\x< 4\end{matrix}\right.\)\(\Rightarrow x< 3\)
Vậy...............
c/ \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}-\dfrac{1}{8}\)
\(\Rightarrow\dfrac{-1}{12}< x< -\dfrac{5}{48}\)
Vậy...............
Để ( x + 1 ) ( x - 2 ) < 0
=> x + 1 và x - 2 phải khác dấu mà x + 1 > x + 2
=> x + 1 dương x + 2 âm
Tức là x + 1 > 0 => x > - 1 và x - 2 < 0 => x < 2
`2024x(x-2024/2025)=0`
`=> 2024x= 0` hoặc `x - 2024/2025 = 0`
`=> x = 0 : 2024` hoặc `x = 0 + 2024/2025`
`=> x = 0` hoặc `x = 2024/2025`
Vậy: `x= 0; x = 2024/2025`