K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 9

Đặt \(x+3=t\)

\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=34\)

\(\Leftrightarrow2t^4+12t^2+2=34\)

\(\Leftrightarrow t^4+6t^2-16=0\)

\(\Rightarrow\left[{}\begin{matrix}t^2=2\\t^2=-8\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t=\sqrt{2}\\t=-\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+3=\sqrt{2}\\x+3=-\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3+\sqrt{2}\\x=-3-\sqrt{2}\end{matrix}\right.\)

17 tháng 9

Đặt \(y=x+3\)

\(Pt\Leftrightarrow\left(y+1\right)^4+\left(y-1\right)^4=17\)

\(\Leftrightarrow\left(y^4+4y^3+6y^2+4y+1\right)+\left(y^4-4y^3+6y^2-4y+1\right)=17\)

\(\Leftrightarrow2y^4+12y^2+2=34\)

\(\Leftrightarrow2y^4+12y^2-32=0\)

\(\Leftrightarrow y^4+6y^2-16=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t^2=2\left(nhận\right)\\t^2=-8\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow\left(x+3\right)^2=2\)

\(\Leftrightarrow x+3=\pm\sqrt{2}\)

\(\Leftrightarrow x=-3\pm\sqrt{2}\)

6 tháng 8 2021

3x4 + x2 - 4 = 0

Đặt t = x2 ( a ≥ 0 ) pt đã cho trở thành 3t2 + t - 4 = 0 

Dễ thấy pt trên có a + b + c = 0 nên có hai nghiệm t1 = 1 (nhận) ; t2 = c/a = -4/3 (loại)

=> x2 = 1 <=> x = ±1

27 tháng 12 2016

5+5+8+0+6+4+5+2+4+1+1+2+3+4+5+6+6+7+8+9+100000000+45638+78536 x 12345 x 34 x 0 +100=100045829

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

27 tháng 12 2016

Dạ, cảm ơn anh, nhưng đây kg phải là đáp án của em. TRẻ con còn biết, mà người lại kg .Anh đừng tự tin, nhanh rồi cũng có lúc sai!!!

10 tháng 5 2018

Ta có : \(4x^2+2y^2+2z^2-4xy+2yz-6y-10z+34=0\)

\(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Leftrightarrow\left(y+z-2x\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}y+z-2x=0\\y=3\\z=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Suy ra \(M=2\)

4 tháng 10 2019

Ta có : 4x^2+2y^2+2z^2-4xy+2yz-6y-10z+34=04x2+2y2+2z2−4xy+2yz−6y−10z+34=0

\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0⇔(4x2+y2+z2−4xy−4xz+2yz)+(y2−6y+9)+(z2−10z+25)=0

\Leftrightarrow\left(y+z-2x\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0⇔(y+z−2x)2+(y−3)2+(z−5)2=0

\(\Leftrightarrow\hept{\begin{cases}y+z-2x=0\\y=3\\z=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Suy ra M=2M=2

23 tháng 5 2017

@ngonhuminh

24 tháng 5 2017

chẳng lẽ CTV của hoc24.vn không biết làm câu này sao. nếu ai biết thì giúp mình với. chứ mình đăng câu hỏi này lâu rồi mà sao không có câu trả lời vậy.

a: \(A=\left(\dfrac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}-1+\sqrt{x}+1}{x-1}\)

\(=\dfrac{x+4\sqrt{x}+4-x-2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{2\sqrt{x}}\)

\(=\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2\sqrt{x}+2}{\sqrt{x}}\)

c: 2x-3căn x-5=0

=>2x-5căn x+2căn x-5=0

=>2căn x-5=0

=>x=25/4

Khi x=25/4 thì \(A=\dfrac{2\cdot\dfrac{5}{4}+2}{\dfrac{5}{4}}=\dfrac{18}{5}\)

19 tháng 5 2018

\(x+y+z=2\sqrt{x-34}+4\sqrt{y-21}+6\sqrt{z-4}+45\)

ĐK: \(x\ge34;y\ge21;z\ge4\)

\(pt\Leftrightarrow x-34-2\sqrt{x-34}+1+y-21-4\sqrt{y-21}+4+z-4-6\sqrt{z-4}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-34}-1\right)^2+\left(\sqrt{y-21}-2\right)^2+\left(\sqrt{z-4}-3\right)^2=0\left(1\right)\)

Dễ Thấy: \(VT_{\left(1\right)}\ge0\) nên dấu "=" khi

\(\hept{\begin{cases}\sqrt{x-34}=1\\\sqrt{y-21}=2\\\sqrt{z-4}=3\end{cases}}\) 

Giải tiếp rồi thay vào T

11 tháng 12 2015

đề bài sai nhé, 6x phảy là 6y
\(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(-2x+y+z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Vì \(\left(-2x+y+z\right)^2\ge0\)
\(\left(y-3\right)^2\ge0\)
\(\left(z-5\right)^2\ge0\)
\(\Rightarrow\left(-2x+y+z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow y=3;z=5;x=4\)
\(\left(x-4\right)^{2015}+\left(y-4\right)^{2015}+\left(z-4\right)^{2015}=\left(4-4\right)^{2015}+\left(3-4\right)^{2015}+\left(5-4\right)^{2015}=0\)

26 tháng 6 2019

B=\(\frac{3\sqrt{x}+4}{3\sqrt{x}-2}-\frac{42\sqrt{x}+34}{\left(3\sqrt{x}-2\right)\left(5\sqrt{x}+7\right)}=\frac{(3\sqrt{x}+4)(5\sqrt{x}+7)-42\sqrt{x}-34}{\left(3\sqrt{x}-2\right)\left(5\sqrt{x}+7\right)}=\frac{15x+20\sqrt{x}+21\sqrt{x}+28-42\sqrt{x}-34}{\left(3\sqrt{x}-2\right)\left(5\sqrt{x}+7\right)}=\frac{15x-\sqrt{x}-6}{\left(3\sqrt{x}-2\right)\left(5\sqrt{x}+7\right)}=\frac{\left(3\sqrt{x}-2\right)\left(5\sqrt{x}+3\right)}{\left(3\sqrt{x}-2\right)\left(5\sqrt{x}+7\right)}=\frac{5\sqrt{x}+3}{5\sqrt{x}+7}\)

16 tháng 9 2015

Đặt \(t=\sqrt{x^2+4\sqrt{5}}\to t>0.\)  Phương trình trở thành \(\frac{\left(2t^2-7\right)^2-161}{4}=\left(34-3t^2\right)t\Leftrightarrow\left(2t^2-7\right)^2-161=4t\left(34-3t^2\right)\)
\(\Leftrightarrow\left(t^2-2t-4\right)\left(t^2+5t+7\right)=0\Leftrightarrow t^2-2t=4\Leftrightarrow t=1+\sqrt{5}.\)  (Vì t>0)

Vậy ta được \(x^2+4\sqrt{5}=\left(1+\sqrt{5}\right)^2\Leftrightarrow x^2=\left(\sqrt{5}-1\right)^2\Leftrightarrow x=\pm\left(\sqrt{5}-1\right).\)