Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(Q=\dfrac{9\sqrt{x}-6-3x+2\sqrt{x}+15x+41\sqrt{x}+28-42\sqrt{x}-34}{\left(5\sqrt{x}+7\right)\left(3\sqrt{x}-2\right)}\)
\(=\dfrac{12x+10\sqrt{x}-12}{\left(5\sqrt{x}+7\right)\left(3\sqrt{x}-2\right)}\)
\(=\dfrac{12x+18\sqrt{x}-8\sqrt{x}-12}{\left(3\sqrt{x}-2\right)\left(5\sqrt{x}+7\right)}\)
\(=\dfrac{6\sqrt{x}\left(2\sqrt{x}+3\right)-4\left(2\sqrt{x}+3\right)}{\left(3\sqrt{x}-2\right)\left(5\sqrt{x}+7\right)}\)
\(=\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\)
c: Để Q là số nguyên thì \(20\sqrt{x}+30⋮5\sqrt{x}+7\)
\(\Leftrightarrow5\sqrt{x}+7\inƯ\left(2\right)\)
hay \(x\in\varnothing\)
a) + \(VT=\sqrt{x^2+2x+10}+x^2+2x+1+7\)
\(=\sqrt{x^2+2x+1}+\left(x+1\right)^2+7>0\forall x\)
=> ptvn
d) ĐK : \(x^2+7x+7\ge0\)
Đặt \(t=\sqrt{x^2+7x+7}\ge0\) \(\Rightarrow t^2=x^2+7x+7\)
\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0\)
\(\Leftrightarrow3t^2+2t-5=0\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)
\(\Leftrightarrow t=1\) ( do \(3t+5>0\forall t\ge0\) )
\(\Leftrightarrow x^2+7x+1=0\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) ( TM )
f) ĐK : \(x\ge1\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\) thì pt trở thành :
\(a+b-ab-1=0\)
\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)
\(K=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3x+9\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{15\sqrt{x}-11-3x-9\sqrt{x}-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5x-5\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
Kết quả số xấu thì không biết có sai dấu chỗ nào không
1) Sửa đề: \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Ta có: \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
Ta có: \(x=3-2\sqrt{2}\)
\(=2-2\cdot\sqrt{2}\cdot1+1\)
\(=\left(\sqrt{2}-1\right)^2\)
Thay \(x=\left(\sqrt{2}-1\right)^2\) vào biểu thức \(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\), ta được:
\(A=\frac{-5\cdot\sqrt{\left(\sqrt{2}-1\right)^2}+2}{\sqrt{\left(\sqrt{2}-1\right)^2}+3}\)
\(=\frac{-5\cdot\left(\sqrt{2}-1\right)+2}{\sqrt{2}-1+3}\)
\(=\frac{-5\sqrt{2}+5+2}{\sqrt{2}+2}\)
\(=\frac{-5\sqrt{2}+7}{\sqrt{2}+2}\)
Vậy: Khi \(x=3-2\sqrt{2}\) thì \(A=\frac{-5\sqrt{2}+7}{\sqrt{2}+2}\)
2) Ta có: \(B=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\)
\(=\frac{\left(x+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x\sqrt{x}+x+2\sqrt{x}+2+x+x\sqrt{x}-\sqrt{x}-1-\left(2x+2\sqrt{x}+x\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{2x+2x\sqrt{x}+\sqrt{x}+1-2x-2\sqrt{x}-x\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(x-1\right)}{\left(x-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
Ta có: \(x=7-2\sqrt{6}\)
\(=6-2\sqrt{6}\cdot1+1\)
\(=\left(\sqrt{6}-1\right)^2\)
Thay \(x=\left(\sqrt{6}-1\right)^2\) vào biểu thức \(B=\frac{\sqrt{x}}{x+\sqrt{x}+1}\), ta được:
\(B=\frac{\sqrt{\left(\sqrt{6}-1\right)^2}}{\left(\sqrt{6}-1\right)^2+\sqrt{\left(\sqrt{6}-1\right)^2}+1}\)
\(=\frac{\sqrt{6}-1}{7-2\sqrt{6}+\sqrt{6}-1+1}\)
\(=\frac{\sqrt{6}-1}{7-\sqrt{6}}\)
Vậy: Khi \(x=7-2\sqrt{6}\) thì \(B=\frac{\sqrt{6}-1}{7-\sqrt{6}}\)
3) Ta có: \(C=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)
\(=\frac{\sqrt{x}\left(x-3\sqrt{x}-x-9\right)}{\left(\sqrt{x}+3\right)\left(2\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}\left(-3\sqrt{x}-9\right)}{\left(\sqrt{x}+3\right)\cdot2\cdot\left(\sqrt{x}+2\right)}\)
\(=\frac{-3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(2\sqrt{x}+4\right)}\)
\(=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)
Ta có: \(x=7-4\sqrt{3}\)
\(=4-2\cdot2\cdot\sqrt{3}+3\)
\(=\left(2-\sqrt{3}\right)^2\)
Thay \(x=\left(2-\sqrt{3}\right)^2\) vào biểu thức \(C=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\), ta được:
\(C=\frac{-3\cdot\sqrt{\left(2-\sqrt{3}\right)^2}}{2\cdot\sqrt{\left(2-\sqrt{3}\right)^2}+4}\)
\(=\frac{-3\cdot\left(2-\sqrt{3}\right)}{2\cdot\left(2-\sqrt{3}\right)+4}\)
\(=\frac{-6+3\sqrt{3}}{4-2\sqrt{3}+4}\)
\(=\frac{-6+3\sqrt{3}}{8-2\sqrt{3}}\)
Vậy: Khi \(x=7-4\sqrt{3}\) thì \(C=\frac{-6+3\sqrt{3}}{8-2\sqrt{3}}\)
B=\(\frac{3\sqrt{x}+4}{3\sqrt{x}-2}-\frac{42\sqrt{x}+34}{\left(3\sqrt{x}-2\right)\left(5\sqrt{x}+7\right)}=\frac{(3\sqrt{x}+4)(5\sqrt{x}+7)-42\sqrt{x}-34}{\left(3\sqrt{x}-2\right)\left(5\sqrt{x}+7\right)}=\frac{15x+20\sqrt{x}+21\sqrt{x}+28-42\sqrt{x}-34}{\left(3\sqrt{x}-2\right)\left(5\sqrt{x}+7\right)}=\frac{15x-\sqrt{x}-6}{\left(3\sqrt{x}-2\right)\left(5\sqrt{x}+7\right)}=\frac{\left(3\sqrt{x}-2\right)\left(5\sqrt{x}+3\right)}{\left(3\sqrt{x}-2\right)\left(5\sqrt{x}+7\right)}=\frac{5\sqrt{x}+3}{5\sqrt{x}+7}\)