Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)
\(=>x+1=0\)
\(=>x=-1\)
b,
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)
\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)
\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)
\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)
\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)
Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)
\(=>x+2021=0\)
\(=>x=-2021\)
c,
\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)
\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)
\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)
\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)
Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)
\(=>x+329=0\)
\(=>x=-329\)
refer
https://lazi.vn/edu/exercise/634984/tim-x-biet-x-1-2019-x-2-2020-x-3-2021x-4-2022
\(\Leftrightarrow1+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{x\left(x+1\right)}=1+\dfrac{2019}{2021}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2019}{2021}\)
\(\Leftrightarrow1-\dfrac{2}{x+1}=\dfrac{2019}{2021}\)
\(\Leftrightarrow\dfrac{2}{x+1}=1-\dfrac{2019}{2021}\)
\(\Leftrightarrow\dfrac{2}{x+1}=\dfrac{2}{2021}\)
\(\Leftrightarrow x+1=2021\)
\(\Leftrightarrow x=2020\)
\(\dfrac{x-1}{2019}+\dfrac{x-2}{2018}=\dfrac{x-3}{2017}+\dfrac{x-4}{2016}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2019}-1\right)+\left(\dfrac{x-2}{2018}-1\right)=\left(\dfrac{x-3}{2017}-1\right)+\left(\dfrac{x-4}{2016}-1\right)\)
\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}-\dfrac{x-2020}{2017}-\dfrac{x-2010}{2016}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)
\(\Rightarrow x-2020=0\Leftrightarrow x=2020\)
vậy.......
\(\dfrac{1}{3}+\dfrac{1}{6}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2017}{2019}\\ \Rightarrow\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2017}{2019}\\ \Rightarrow2.\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2017}{2019}\\ \Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2017}{4038}\\ \Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2019}\\ \Rightarrow x=2018\)
a, Ta có : \(A=4-\left|2x+5\right|\le4\)
Dấu ''='' xảy ra khi x = -5/2
Vậy GTLN A là 4 khi x = -5/2
b, Ta có : \(\left|x-1\right|+5\ge5\)
\(\Rightarrow\dfrac{1}{\left|x-1\right|+5}\le\dfrac{1}{5}\)
Dấu ''='' xảy ra khi x = 1
Vậy GTLN B là 1/5 khi x = 1
c, \(C=4-\left|x-2\right|-\left|3y+6\right|\le4\)
Dấu ''='' xảy ra khi x = 2 ; y = -2
Vậy GTLN C là 4 khi x = 2 ; y = -2
\(\dfrac{x-2019}{4}=\dfrac{1}{x-2019}\\ \left(x-2019\right)^2=4\\\left(x-2019\right)^2=\left(\pm2\right)^2\\ TH1:x-2019=2\\ x=2+2019\\ x=2021\\ TH2:x-2019=-2\\ x=-2+2019\\ x=2017\\ ----------------\\ \left(2\cdot x+1\right)^3=125\\ \left(2\cdot x+1\right)^3=5^3\\ 2\cdot x+1=5\\ 2\cdot x=5-1\\ 2\cdot x=4\\ x=\dfrac{4}{2}\\ x=2\)
\(\dfrac{x-2019}{4}=\dfrac{1}{x-2019}\)
\(\Rightarrow\left(x-2019\right)^2-2^2=0\)
\(\Rightarrow\left(x-2019-2\right)\left(x-2019+2\right)=0\)
\(\Rightarrow\left(x-2021\right)\left(x-2017\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2021=0\\x-2017=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2021\\x=2017\end{matrix}\right.\)
Vậy .........
\(---------\)
\(\left(2x+1\right)^3=125\)
\(\Rightarrow\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Vậy ..........