\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow70+18< x< 120+126+70\)

=>88<x<316

hay \(x\in\left\{89;90;...;315\right\}\)

b: \(\Leftrightarrow-\dfrac{9}{3}< x< \dfrac{8}{5}+\dfrac{9}{5}=\dfrac{17}{5}\)

=>-3<x<3,4

hay \(x\in\left\{-2;-1;0;1;2;3\right\}\)

2 tháng 4 2017

Từ gt ta có:
\(\dfrac{13}{3}.\left(-\dfrac{1}{3}\right)\le x\le\dfrac{2}{3}.\left(-\dfrac{11}{12}\right)\)
\(\Leftrightarrow\dfrac{-13}{9}\le x\le-\dfrac{11}{18}\)
\(\Leftrightarrow\dfrac{-26}{18}\le x\le-\dfrac{11}{18}\)
Suy ra \(26\ge x\ge11\)
Vậy \(11\le x\le26\) ( x thuộc Z ) là các giá trị cần tìm

2 tháng 4 2017

\(4\dfrac{1}{3}.\left(\dfrac{1}{6}-\dfrac{1}{2}\right)\le x\le\dfrac{2}{3}.\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)\)

\(\dfrac{13}{3}.\dfrac{-1}{3}\le x\le\dfrac{2}{3}.\dfrac{-11}{12}\)

\(\dfrac{-13}{9}\)\(\le x\le\)\(\dfrac{-11}{18}\)

\(\dfrac{-26}{18}\)\(\le x\le\dfrac{-11}{18}\)

\(\Rightarrow x\in\left\{\dfrac{-12}{18};\dfrac{-13}{18};\dfrac{-14}{18};\dfrac{-15}{18};...;\dfrac{-24}{18};\dfrac{-25}{18}\right\}\)Tick hộ mình nha bạn

a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}< x< \dfrac{1}{48}-\dfrac{1}{16}+\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{6}{12}-\dfrac{4}{12}-\dfrac{3}{12}< x< \dfrac{1}{48}-\dfrac{3}{48}+\dfrac{8}{48}\)

\(\Leftrightarrow\dfrac{-1}{12}< x< \dfrac{1}{8}\)

\(\Leftrightarrow-2< 24x< 3\)

=>x=0

b: \(\Leftrightarrow\dfrac{9-10}{12}< \dfrac{x}{12}< 1-\dfrac{8-3}{12}=\dfrac{7}{12}\)

=>-1<x<7

hay \(x\in\left\{0;1;2;3;4;5;6\right\}\)

7 tháng 3 2017

bạn cứ tính 2 vế là xong mà:

a) x\(\in\){1;2;3;4;5;6;7}

b) x=0

10 tháng 3 2018

Ta có: 1/3 + −2/5+ 1/6 + −1/5 ≤ x < −3/4+2/7+-1/4+3/5+5/7

⇒10-12+5-6/30≤ x< -105+40-35+84+100/140

⇒-3/30≤ x <84/140

⇒-0,1≤ x < 0,6

⇒x=0

a: \(\dfrac{x+2}{27}=\dfrac{x}{-9}\)

=>x+2=-3x

=>4x=-2

hay x=-1/2

b: \(\dfrac{-7}{x}=\dfrac{21}{34-x}\)

=>-7(34-x)=21x

=>34-x=-3x

=>2x=-34

hay x=-17

c: \(\dfrac{-8}{15}< \dfrac{x}{40}< \dfrac{-7}{15}\)

\(\Leftrightarrow-64< 3x< -56\)

hay \(x\in\left\{-21;-20;-19\right\}\)

d: \(\dfrac{-1}{2}< \dfrac{x}{18}< \dfrac{-1}{3}\)

=>-9<x<-6

hay \(x\in\left\{-8;-7\right\}\)

11 tháng 7 2017

giúp zới

khocroi

a: \(\Leftrightarrow-\dfrac{720}{150}=-4.8< x< \dfrac{-63}{210}=-0.3\)

mà x là số nguyên

nen \(x\in\left\{-4;-3;-2;-1\right\}\)

b: \(\Leftrightarrow-\dfrac{125}{27}< x< \dfrac{120}{210}=\dfrac{4}{7}\)

mà x là số nguyên

nên \(x\in\left\{-4;-3;-2;-1;0\right\}\)

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)