\(\sqrt{4-x^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2024

ĐK: \(4-x^2\ge0\)

\(\Leftrightarrow\left(2-x\right)\left(2+x\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2-x\ge0\\2+x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2-x\le0\\2+x\le0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-2\le x\le2\\x\in\varnothing\end{matrix}\right.\\ \Leftrightarrow-2\le x\le2\)

10 tháng 7 2024

ĐKXĐ: `4 - x^2 >= 0`

`<=> x^2 <= 4`

`<=> -2 <= x <= 2`

22 tháng 7 2017

dkxd \(x\ge4\)

A=\(\sqrt{x-4+4\sqrt{x-4}+4}\) +\(\sqrt{x-4-4\sqrt{x-4}+4}\)

=\(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)

th1 \(\sqrt{x-4}\ge2\Leftrightarrow x\ge8\)

ta co\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)

th2 \(4\le x< 8\)

ta co \(\sqrt{x-4}+2+2-\sqrt{x-4}=4\)

28 tháng 8 2018

Căn thức xác định \(\Leftrightarrow x^2+5x+4\ge0\)

                            \(\Leftrightarrow\left(x+1\right)\left(x+4\right)\ge0\)

Do đó: (x+1) và (x+4) là 2 số cùng dấu.

TH1: \(\hept{\begin{cases}x+1\ge0\\x+4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge-4\end{cases}\Leftrightarrow}x\ge-1}\)

TH2: \(\hept{\begin{cases}x+1\le0\\x+4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\le-4\end{cases}\Leftrightarrow}x\le-4}\)

Vậy \(\orbr{\begin{cases}x\ge-1\\x\le-4\end{cases}}\)

Chúc bạn học tốt.

10 tháng 7 2019

Điều kiện xác định \(\sqrt{8x-x^2-15}\)là \(8x-x^2-15\ge0\)

\(\Leftrightarrow\left(-x^2+3x\right)+\left(5x-15\right)\ge0\)

\(\Leftrightarrow-x\left(x-3\right)+5\left(x-3\right)\ge0\)

\(\Leftrightarrow\left(-x+5\right)\left(x-3\right)\ge0\)

Đặt f(x)= \(\left(-x+5\right)\left(x-3\right)\)

f(x)=0 \(\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)

Ta có bảng xét dấu:

x                                                         3                                                       5    

x-3                       -                              0                          +                            |                            +

-x+5                     -                              |                            -                           0                            +

f(x)                       +                              0                          -                            0                            +

Để f(x) \(\ge0\Leftrightarrow\)\(\orbr{\begin{cases}x\le3\\x\ge5\end{cases}}\)

Vậy điều kiện xác định \(\sqrt{8x-x^2-15}\)là \(\orbr{\begin{cases}x\le3\\x\ge5\end{cases}}\)

16 tháng 6 2019

giúp mình vs! Mình đang cần gấp

a)biểu thức có nghĩa khi :

-x4 -2 > 0 <=> - x4 > 2 

20 tháng 6 2019

a)\(\sqrt{-8x}\)có nghĩa khi \(-8x\ge0\Leftrightarrow x\le0\)

b)\(\sqrt{\left(\sqrt{3}-x\right)^2}\)có nghĩa khi \(\left(\sqrt{3}-x\right)^2\ge0\Leftrightarrow\sqrt{3}-x\ge0\Leftrightarrow x\le\sqrt{3}\)

c)\(\frac{16x-1}{\sqrt{x-7}}\)có nghĩa khi \(\hept{\begin{cases}\sqrt{x-7}\ne0\\x-7\ge0\end{cases}\Leftrightarrow x-7}>0\Leftrightarrow x>7\)

 \(a,-8x>0\Rightarrow x< 0\)

\(b,x\in R\)

\(c,\hept{\begin{cases}\sqrt{x-7}\ne0\\x-7>0\Rightarrow x>7\end{cases}}\)

31 tháng 10 2017

ĐKXĐ của A : \(\hept{\begin{cases}x\ge0\\x+1\ge0\end{cases}}\Leftrightarrow x\ge0\)

ĐKXĐ của B : \(\hept{\begin{cases}x+4\ge0\\x-1\ge0\end{cases}}\Leftrightarrow x\ge1\)

a) Ta thấy theo điều kiện  \(x\ge0\Rightarrow x+1\ge1\Rightarrow\sqrt{x+1}\ge1\Rightarrow A=\sqrt{x}+\sqrt{x+1}\ge1\)

Ta thấy theo điều kiện   \(x\ge1\Rightarrow x+4\ge5\Rightarrow\sqrt{x-1}\ge0;\sqrt{x+4}\ge5\)

\(\Rightarrow B=\sqrt{x+4}+\sqrt{x-1}\ge\sqrt{5}\)

b) Ta thấy A = 1 khi \(\hept{\begin{cases}\sqrt{x}=0\\\sqrt{x+1}=1\end{cases}}\Rightarrow x=0\)

Do \(B\ge\sqrt{5}\) mà \(\sqrt{5}>2\) nên phương trình B = 2 vô nghiệm.

31 tháng 10 2017

Hoàng Thị Thu Huyền sao bài của cô ngắn v? Bài em dài lắm ạ. 

Giải:

\(A=\sqrt{x}+\sqrt{x+1}\) xác định khi và chỉ khi:

\(\hept{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ge1\end{cases}}\Leftrightarrow x\ge0}\)

\(B=\sqrt{x+4}+\sqrt{x-1}\) xác định khi và chỉ khi:

\(\hept{\begin{cases}x+4\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-4\\x\ge1\end{cases}}\Leftrightarrow\sqrt{x+1}\ge}1\)

a, Với \(x\ge0\)ta có: \(x+1\ge1\Rightarrow\sqrt{x+1}\ge1\)

Suy ra: \(A=\sqrt{x}+\sqrt{x+1}\ge1\)

Với \(x\ge1\)ta có:

\(x+4\ge1+4\Leftrightarrow x+4\ge5\Leftrightarrow\sqrt{x+4}\ge\sqrt{5}\)

Suy ra: \(B=\sqrt{x+4}+\sqrt{x-1}\ge5\)

b, *\(\sqrt{x}+\sqrt{x+1}=1\)

Điều kiện: \(x\ge0\)

Ta có: \(\sqrt{x}+\sqrt{x+1}\ge1\)

Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x}=0\)và \(\sqrt{x+1}=1\)

Suy ra: \(x=0\)

*\(\sqrt{x+4}+\sqrt{x-1}=2\)

Ta có: \(\sqrt{x+4}+\sqrt{x-1}\ge\sqrt{5}\)

Mà: \(\sqrt{5}>\sqrt{4}\Leftrightarrow\sqrt{5}>2\)

Vậy: Không có giá trị nào của x để \(\sqrt{x+4}+\sqrt{x-1}=2\)

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

9 tháng 11 2016

a/ Đkxđ: x\(\ge\)0 x\(\ne\)4

=\(\frac{3\left(\sqrt{x}+2\right)+2\left(\sqrt{x}-2\right)+8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{5\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{5}{\sqrt{x}-2}\)

b/ Với x\(\ge\)0 vã\(\ne\)4

Để M\(\in\)Z \(\Leftrightarrow\) \(\frac{5}{\sqrt{x}-2}\in Z\)

\(\Rightarrow\) \(\sqrt{x}-2\inƯ\left(5\right)\)

\(\begin{cases}\sqrt{x}-2=5\\\sqrt{x}-2=-5\\\sqrt{x}-2=1\\\sqrt{x}-2=-1\end{cases}\Rightarrow\begin{cases}x=49\left(tmĐKXĐ\right)\\KhongcogiatriTm\\x=9\left(tmĐKXĐ\right)\\x=1\left(tmĐKXĐ\right)\end{cases}\)

Vậy để M\(\in\)Z thì x=.....

c/ Với...

Để M<2 thì \(\frac{5}{\sqrt{x}-2}< 2\Rightarrow\frac{5-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}< 0\)

\(\left[\begin{array}{nghiempt}\hept{\begin{cases}9-2\sqrt{x}>0\\\sqrt{x}-2< 0\end{array}\right.\\\hept{\begin{cases}9-2\sqrt{x}< 0\\\sqrt{x}-2>0\end{array}\right.\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x< \frac{81}{4}\\x< 4\end{array}\right.\\\hept{\begin{cases}x>\frac{81}{4}\\x>4\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x< 4\\x>\frac{81}{4}\end{array}\right.}\)

10 tháng 11 2016

thanks